Operation Manual CT100 Series Inverter

Document version: V1.0

Content

1	Safe	ty precaut	tions	1
	1.1 \$	Safety guid	delines	
		1.1.1	Before installation	
		1.1.2	Installation	
		1.1.3	Wiring	2
		1.1.4	Operation	3
2			iew	
	2.1		nation key and name plate	
		2.1.1 Typ	e designation key	5
			ne plate	
	2.2 F		ecifications and technical parameters	
		2.2.1 Pro	duct specifications	
		2.2.2	Technical parameters	
			liagram of the inverter	
			liagram of the keypad (unit: mm)	
3			d wiring	
			environment	
			direction and separation distance	
	3.3 I		and disassembly of the keypad and the cover plate	
	3.4		ipheral components and instructions	
			ndard peripheral components	
		3.4.2 Fur	nctions of peripheral components	26
		3.4.3	Specifications of the cables, the circuit breakers and the	
		contactor		
	3.5	Ferminals	wiring of main circuit	28
		3.5.1	Terminals of main circuit	
		3.5.2	Functions of the main circuit terminals	
			viring diagram	
	3.7		ng of terminals in main circuit	
			ver supply wiring of main circuit	
			erter wiring of main circuit	
		3.7.3	Motor wiring of main circuit	
	3.8	Wiri	ng of control circuit	37
			cautions	
		3.8.2	Schematic diagram of the control plate	
		3.8.3	Pins of the control plate	
		3.8.4	Terminals of control circuit	
		3.8.5	Functions of terminals in control circuit	
		3.8.6	Wiring of switch inputs	
	3.9	EMO	C problems in wiring	44
		3.9.1 Ger	neral knowledge of EMC	44

CT100 inverter

Content

3.9.1	2 Noise control	
3.9.3	3 Grounding	45
3.9.4	4 Leakage current	45
4 Keypad o	peration procedure	
4.1 Keypa	ad	
4.1.	1 Unit and status LEDs	47
		50
		on51
		51
4.3 Displa	ay the parameters	
		52
4.3.3	3 Fault state	
		e52
		53
6 Detailed i	nstructions of function paramet	ers87
6.1 Basic	function (F00 group)	
6.2 Motor	[·] parameters (F01 group)	
		94
6.6 HMI i	nterface (F05 group)	
6.8 Outpu	ut terminals (F07 group)	
6.9 Fault	and protection (F08 group)	
6.10 PID	control (F09 group)	
6.11 Wob	ble, step length and count value (F10 group)128
6.12 Mult	i-step speed and PLC (F11 group)	
6.15 Res	erved functions (F14 group)	
/ Faults an	a solutions	
7.1.	2 Automatic power off after power	on:
		he inverter is running 143
8 Daily mai	ntenance	148

Content

8.1 Daily maintenance	.148
8.2 Periodic maintenance	
8.3 Replacement of wear parts	150
8.4 Storage of the inverter	
9 Communication protocol	

1 Safety precautions

Please read this manual carefully and follow all safety precautions before installing, debugging, maintaining and repairing the inverter.

If any physical injury or death or damage to the devices occurs for ignoring to the safety precautions in the manual, our company will not be responsible for any damages and we are not legally bound in any manner.

Following the warning symbols are used in this manual:

Danger Serious physical injury or even death may occur if not follow the relative requirements.

Warning Physical injury or damage to the devices may occur if not follow the relative requirements.

1.1 Safety guidelines

1.1.1 Before installation

» Do not operate the inverter if there are any signs of water in the inverter when unpacking.

» Do not operate the inverter if there is any damage or components loss to the inverter when unpacking. Otherwise, physical injury or damage to the devices may occur.

» Do not operate the inverter if the packing list is not consistent with the devices.
 » Do not operate the inverter if the information on the type designation label is not consistent with your order.

1.1.2 Installation

» Only qualified electricians are allowed to perform the installation, otherwise electric shock may occur.

» Please install the inverter on fire-retardant materials and keep the inverter away from combustible materials, otherwise a fire may occur.

» Please assemble and tighten the mounting screws of the inverter according to the regulations, otherwise the inverter may fall off.

» Do not install the inverter in explosive atmospheres, otherwise an explosion may occur.

» Handle the inverter with care to prevent it falls off and thus causes injury to your feet or device damage.

» Keep the inverter away from the places with large vibrations, water drops and direct sunlight.

» When installing the inverter in the cabinet, especially if two or more inverters are installed in a cabinet, please pay attention to the installation space and ventilation.

» Take measures to avoid screws, cables and other conductive matters fall into the inverter during installation.

1.1.3 Wiring

» Only qualified electricians are allowed to perform the wiring, otherwise electric shock or device damage may occur.

» Carry out wiring strictly in accordance with this manual, otherwise there is a risk of electric shock or device damage.

» Ensure all input power supply is disconnected before wiring, otherwise electric shock may occur.

» Please select all cables, circuit breakers and contactors meeting the national standards as required by the manual.

» The inverter must be grounded reliably, otherwise electric shock may occur.

» Carry out wiring strictly in accordance with the silk printing instructions and avoid connecting the input and output wires reversely, otherwise the damage to the devices may occur.

CT100 inverter

» Keep the signal cables of the inverter away from the power cables as far as possible, or distribute the two categories of cables vertically-crossed if the distance is not far enough, otherwise it may cause signal interference.

» Ensure that all the screws are tightened when wiring, otherwise damage to the inverter may occur.

» The encoders and sensors should be applied with the shielded cables and the shielded layer should be grounded reliably.

1.1.4 Operation

» Confirm that the wiring is completed and correct and then cover the plate before power on.

» Do not open the plate after power on, otherwise electric shock may occur.

» Operate the inverter appropriately, otherwise damage to the inverter may occur.

» Non-professionals are not allowed to test the signals when the inverter is running. Otherwise, physical injury or damage to the devices may occur.

» Do not change the parameters of the inverter at random, otherwise damage to the inverter may occur.

» Do not start up or stop the inverter by power on or off, otherwise damage to the inverter may occur.

» Ensure that the circuit breakers or contactors at the output sides of the inverter are not in output state before switching, otherwise damage to the inverter may occur.

1.2 Others

» This inverter is not suitable for the occasions when the specifications exceed those specified in this manual. If you have special requirements, please contact our technical department.

» The inverter is equipped with surge suppressors inside, which can protect it from the lightning. It is necessary to mount external surge suppressors at the power input side of the inverter in high lightning incidence areas.

» When the conductors between the inverter and the motor exceed 100m, it is recommended to mount the output reactors to avoid overcurrent caused by excessive distributed capacitance.

» Do not mount the compensation capacitors and the surge absorbers at the output sides of the inverter. Otherwise, it may cause damage to the inverter due to overheating.

» Mounting the input or output reactors, special filters and magnetic rings at the input or output sides of the inverter can effectively reduce the noise and thus avoid interference to other devices.

» Non-professionals are not allowed to perform withstand voltage tests on the inverter, , otherwise damage to the inverter may occur.

» Deal with the devices as industrial effluent after scrapping. Burning is strictly prohibited, otherwise an explosion may occur.

» The cooling effect of the inverter is reduced and the electrolytic capacitor electrolyte is also volatile in high altitude areas, which will shorten the life of the inverter. Check the altitude of the actual usage site is below 1000m. If exceeds, derate 1% for every additional 100m.

2 Product overview

2.1 Type designation key and name plate

2.1.1 Type designation key

The letters and numbers of the type designation key indicate that the product series, voltage, power, load etc.

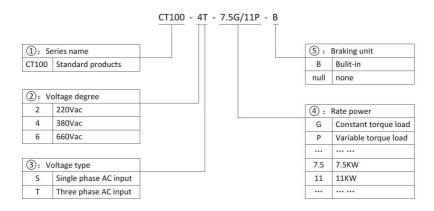


Figure 2-1 Type designation key

2.1.2 Name plate

Figure 2-2 Product name plate

2.2 Product specifications and technical parameters

2.2.1 Product specifications

Inverter model	Power (kW)	Input current (A)	Output current (A)	Applicable motor power (kW)
	Single-ph	ase 220Vac 50/6	60Hz	
CT100-2S-0.7G-B	0.75	8.2	4.5	0.75
CT100-2S-1.5G-B	1.5	14.0	7.0	1.5
CT100-2S-2.2G-B	2.2	23.0	9.6	2.2
	Three-phase 380Vac 50/60Hz			
СТ100-4Т-0.7G-В	0.75	3.4	2.5	0.75
СТ100-4Т-1.5G-В	1.5	5.0	3.7	1.5

СТ100-4Т-2.2G-В	2.2	5.8	5.3	2.2
СТ100-4Т-4.0G/5.5Р-В	4.0	12.0	9.5	4.0
С1100-41-4.00/ 5.5Р-В	5.5	18.5	14	5.5
СТ100-4Т-5.5G/7.5Р-В	5.5	18.5	14	5.5
С1100-41-3.30/7.3Р-В	7.5	22.5	18.5	7.5
CT100 4T 7 5C/11D D	7.5	22.5	18.5	7.5
CT100-4T-7.5G/11P-B	11	30.0	25.0	11
CT100 4T 11C/15D D	11	30.0	25.0	11
CT100-4T-11G/15P-B	15	39.0	32.0	15
CT100-4T-15G/18.5P-	15	39.0	32.0	15
В	18.5	45.0	38.0	18.5
CT100-4T-18.5G/22P-	18.5	45.0	38.0	18.5
В	22	54.0	45.0	22
CT100 4T 22C/20D D	22	54.0	45.0	22
CT100-4T-22G/30P-B	30	68.0	60.0	30
CT100 4T 20C/27D D	30	68.0	60.0	30
СТ100-4Т-30G/37Р-В	37	84.0	75.0	37
CT100 4T 27C/45D D	37	84.0	75.0	37
CT100-4T-37G/45P-B	45	98.0	92.0	45
CT100-4T-45G/55P	45	98.0	92.0	45

	55	123.0	115.0	55
CT100 4T 55C/75D	55	123.0	115.0	55
CT100-4T-55G/75P	75	157.0	150.0	75
CT100 4T 75C/00D	75	157.0	150.0	75
CT100-4T-75G/90P	90	188.0	180.0	90
CT100 4T 00C/110D	90	188.0	180.0	90
CT100-4T-90G/110P	110	221.0	215.0	110
CT100 4T 110C/120D	110	221.0	215.0	110
CT100-4T-110G/132P	132	267.0	260.0	132
CT100 4T 122C/1(0D	132	267.0	260.0	132
CT100-4T-132G/160P	160	309.0	305.0	160
CT100 4T 1(0C/105D	160	309.0	305.0	160
CT100-4T-160G/185P	185	344.0	340.0	185
CT100 4T 195C/200D	185	344.0	340.0	185
CT100-4T-185G/200P	200	384.0	380.0	200
CT100 4T 200C/220D	200	384.0	380.0	200
CT100-4T-200G/220P	220	429.0	425.0	220
CT100 4T 220C/250D	220	429.0	425.0	220
CT100-4T-220G/250P	250	484.0	480.0	250
CT100-4T-250G/280P	250	484.0	480.0	250

	280	539.0	530.0	280
CT100 4T 200C/215D	280	539.0	530.0	280
CT100-4T-280G/315P	315	612.0	600.0	315
CT100 4T 215C/255D	315	612.0	600.0	315
CT100-4T-315G/355P	355	665.0	650.0	355
CT100-4T-355G	355	665.0	650.0	355
CT100-4T-400G	400	715	720	400
CT100-4T-500G	500	890	860	500
CT100-4T-630G	630	1224	1200	630
CT100-4T-710G	700	1330	1300	700
CT100-4T-800G	800	1460	1440	800
CT100-4T-1000G	1000	1760	1720	1000
	Three-pha	ase 660Vac 50/6	0Hz	
CT100-6T-22	22	38	28	22
CT100-6T-30	30	40	35	30
CT100-6T-37	37	47	45	37
CT100-6T-45	45	55	52	45
CT100-6T-55	55	65	63	55
CT100-6T-75	75	85	86	75
СТ100-6Т-90	90	95	98	90

Product overview

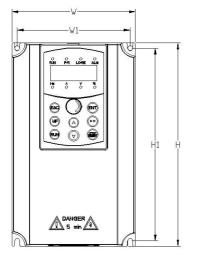
CT100-6T-110	110	118	121	110
CT100-6T-132	132	145	150	132
CT100-6T-160	160	165	175	160
CT100-6T-185	185	198	198	185
CT100-6T-200	200	210	218	200
CT100-6T-220	220	228	240	220
CT100-6T-250	250	255	270	250
CT100-6T-280	280	290	320	280
CT100-6T-315	315	334	350	315
CT100-6T-355	355	362	380	355
CT100-6T-400	400	411	430	400
CT100-6T-500	500	518	540	500
CT100-6T-560	560	578	600	560
СТ100-6Т-630	630	655	680	630
CT100-6T-710	710	724	760	710
CT100-6T-800	800	822	860	800
CT100-6T-1000	1000	1036	1080	1000
CT100-6T-1250	1250	1310	1360	1250

Note: 1. The inverters of power less than or equal to CT100-4T-37G/45P-B are built-in with braking units and braking resistors of power and resistance as required above the table, otherwise damage to the inverter may occur. The inverters of power more than or equal to CT100-4T-45G/55P are mounted with

external braking resistors and you need to purchase the resistors by yourselves. 2. The inverters of power between CT100-4T-18G/22P-B \sim

CT100-4T-37G/45P-B are built-in with DC reactors. The inverters of power between CT100-4T-45G/55P \sim CT100-4T-315G/355P are mounted with external DC reactors and you need to purchase the reactors by yourselves. The inverters of power between CT100-4T-355G \sim CT100-4T-500G are applied with input AC reactors.

3. The above models are the standard general inverters, excluding the industrial special inverters. You can customize non-standard inverters of other specifications.


l'able 2-2 Technical parameters				
Input and	Input voltage	Single-phase 220VAC±15%, three-phase 380VAC±15%,. three-phase 660VAC±15%,.		
output	Input frequency	50~60Hz±5%		
parameters	Output voltage	0∼Rated input voltage		
	Output frequency	0~600Hz		
	Control mode	V/F control, sensorless vector control, torque control		
	Speed ratio	Open loop vector control 1: 100		
	Speed control accuracy	±0.5%		
	Starting frequency	0.00~10.00Hz		
Technical	Overload capacity	150% of rated current: 60s; 180% of rated current: 10s; 200% of rated current: 1s		
control parameters	ACC and DEC time	0.1~3000.0s		
	Energy braking capacity	Operating voltage of braking unit: 320 \sim 750V		
		DC braking frequency: $0{\sim}300$ Hz;		
	DC braking capability	DC braking waiting time: 0 \sim 50s;		
		DC braking current: 0.0 \sim 100.0%;		
		DC braking time: 0.0 \sim 50.0s;		
	Frequency	Analog setting, high-speed pulse setting,		

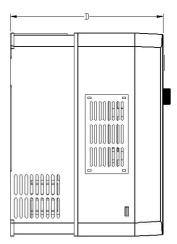
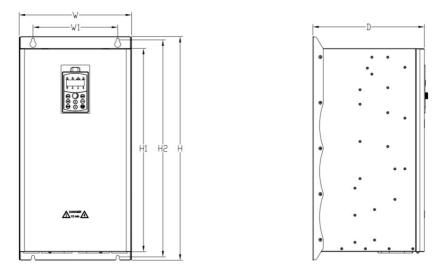
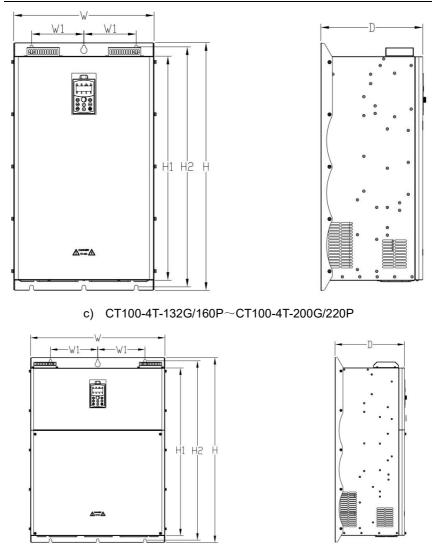
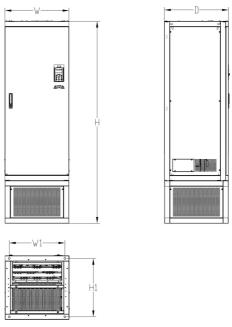

2.2.2 Technical parameters

Table 2-2	Technical	parameters
-----------	-----------	------------


	setting	multi-step speed setting, PID setting, 485 communication setting		
	Auto voltage adjustment	Keep a stable voltage automatically when the grid voltage transients		
	Speed tracking	Start the rotating motor smoothly		
	Digital input	Standard 8-channel inputs, one of which can be high-speed pulse input (HDI)		
Control	Analog input	Standard 2-channel inputs, Al1: 0 \sim 10V or 4 \sim 20mA input optional, Al2: -10V \sim +10V input.		
Control terminals	Digital output	Standard 2-channel multi-function collector outputs, one of which can be high-speed pulse output (HDO).		
	Analog output	Standard 2-channel outputs AO1, AO2 (0 \sim 10V or 4 \sim 20mA optional)		
	Relay output	Standard 2-channel relay outputs		
Communicat ion interfaceRS485 communicationRS485 communication interface RS485 communication, Modbus protocol (RTU mode)				
Fault protection	ACC overvoltage, bus under voltage failure, output pha	DEC overcurrent, constant speed overcurrent, DEC overvoltage, constant speed overvoltage, , motor overload, inverter overload, input power ase loss, rectifier module overheating, inverter ng, external fault, communication fault, current c.		
Keypad display	LED display	Highlight LED digital tube displays the inverter information		
	Running environment	Indoors, less than 1km above sea level, without dust, corrosive gases or direct sunlight		
	Ambient temperature	-10 \sim +40 °C, derate 1% for every additional 1°C when the ambient temperature is between 40 \sim 50 °C		
Others	Humidity	$5{\sim}95\%$ (no condensation)		
	Altitude	$0\sim 2000m,~derate~1\%$ for every additional 100m when the sea level is above 1000m		
	Vibration	Less than 0.5g		
	Storage temperature	−40~+70 ℃		

2.3 Structure diagram of the inverter




a) CT100-2S-2.2G and below power, CT100-4T-11G/15P and below power

b) CT100-4T-15G/18.5P~CT100-4T-110G/132P

d) CT100-4T-220G/250P~CT100-4T-315G/355P

e) CT100-4T-355G~CT100-4T-500G

Figure 2-4 Structure diagram of the inverter Table 2-3 Structure, mounting dimension and weight

Inverter model	Str	Structure and mounting dimension (mm)				Mounting hole size (kg)	Cabinet		
	W	Н	D	W1	H1	H2	(mm)	(kg)	
СТ100-2S-0.7G-В									
CT100-2S-1.5G-B									
CT100-2S-2.2G-B	126	186	155	115	175		5	1.6	C0
СТ100-4Т-0.7G-В									
СТ100-4Т-1.5G-В									

Product overview

			-		-				
СТ100-4Т-2.2G-В									
CT100-4T-4.0G/5.5P-B	140	0 230	172	128	218		5.5	3.5	C1
СТ100-4Т-5.5G/7.5Р-В	140	230	172						CI
СТ100-4Т-7.5G/11Р-В	165	285	200	152	272		5.5	5.2	C2
СТ100-4Т-11G/15Р-В	105	200	200	155	213		5.5	5.2	02
СТ100-4Т-15G/18.5Р-В									
СТ100-4Т-18.5G/22Р-В	214	410	203	184	360	385	7	11.5	C3
СТ100-4Т-22G/30Р-В									
СТ100-4Т-30G/37Р-В	250	450 2	220	220	400	425	7	19	C4
СТ100-4Т-37G/45Р-В			230	220					64
CT100-4T-45G/55P	300	600	280	240	540	580	9	30	C5
CT100-4T-55G/75P	300								05
CT100-4T-75G/90P									
CT100-4T-90G/110P	330	660	330	250	600	640	9	56	C6
CT100-4T-110G/132P									
CT100-4T-132G/160P									
CT100-4T-160G/185P	105	050	355	100	772	826	6 11	110	07
CT100-4T-185G/200P	485	850		180				110	C7
CT100-4T-200G/220P									
CT100-4T-220G/250P	680	940	355	240	850	900	13	165	C8

Product overview

600	1900	600	520	548		14	200	C9
300	600	280	240	540	580	9	30	C5
500	000							00
	660	330	250	600	640	9	56	
330								C6
-								
485	850	255	100	772	826	11	110	C7
	000		100		020			01
680	940	355	240	850	900	13	165	C8
	0.0	300		000			100	0
600	1900	600	520	548		14	200	C9
	-300 -3300 -3330 -485 	300 600 330 660 330 660 485 850 680 940	300 600 280 300 600 280 330 660 330 485 850 355 680 940 355	300 600 280 240 330 660 330 250 485 850 355 180 680 940 355 240	300 600 280 240 540 330 660 330 250 600 485 850 355 180 772 680 940 355 240 850	330 660 330 250 600 640 485 850 355 180 772 826 680 940 355 240 850 900	300 600 280 240 540 580 9 300 600 280 240 540 580 9 330 660 330 250 600 640 9 485 850 355 180 772 826 11 680 940 355 240 850 900 13	300 600 280 240 540 580 9 30 300 600 280 240 540 580 9 30 330 660 330 250 600 640 9 56 485 850 355 180 772 826 11 110 680 940 355 240 850 900 13 165

CT100-6T-500					
CT100-6T-560					
CT100-6T-630					

2.4 Structure diagram of the keypad (unit: mm)

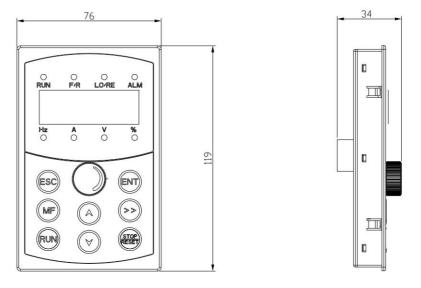


Figure 2-5 Structure diagram of the keypad



Figure 2-6 Structure diagram of the outer bracket

3 Installation and wiring

3.1 Installation environment

1. Ambient temperature: -10 $^\circ\!\mathrm{C}$ -+40 $^\circ\!\mathrm{C}$, derate to use if the temperature is above 40 $^\circ\!\mathrm{C}$

2. Relative humidity: ≤ 95%, no condensation

3. Vibration: <0.5g

4. The inverter should be installed on the flame-retardant materials and there is enough space for cooling.

5. The inverter can output the rated power if the sea level is below 1000m. If the sea level is above 1000m, the output power will decrease. It is recommended to derate 1% for every additional 100m.

6. The inverter is not allowed to fall to the ground suddenly.

7. The inverter is not allowed to be installed near the electromagnetic radiation sources.

8. The inverter is not allowed to be installed in the atmospheres with flammable, explosive or corrosive gases.

9. The inverter is not allowed to be installed in the environments with direct sunlight, oil mist or steam.

10. Take measures to avoid screws, cables and other conductive matters fall into the inverter during installation, or it may cause the inverter failure.

11. For the bad installation environments (textile industry), it is recommended to apply the mounting manner of the external cooling cabinets.

3.2 Installation direction and separation distance

To ensure good heat dissipation, please install it vertically, not horizontally. When multiple inverters are installed in the same cabinet, it is recommended to install the inverters horizontally. When two inverters apply the vertical mounting manner, it is necessary to add the wind board in the middle.

Installation and wiring

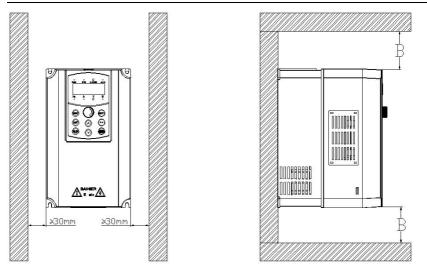


Figure 3-1 CT100-4T-11G/15P and below power

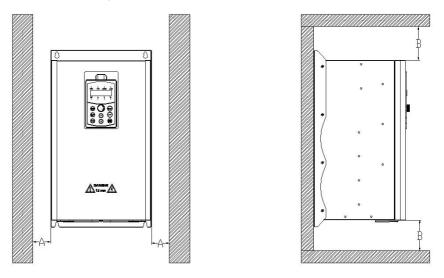


Figure 3-2 CT100-4T-15G/18.5P and above power Table 3-1 Installation space size

Installation and wiring

Inverter model	Installation spa	ice size (mm)	
inverter model	А	В	
CT100-4T-15G/18.5P~ CT100-4T-37G/45P	≥50	≧200	
CT100-4T-45G/55P~ CT100-4T-315G/355P	≧50	≧300	

3.3 Installation and disassembly of the keypad and the cover plate

Figure 3-3 Keypad installation and disassembly of CT100-4T-11G/15P and below

power

Installation and wiring

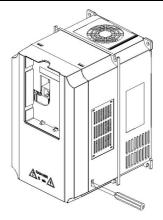
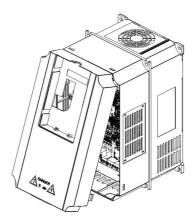



Figure (a) Disassembly position



Figure 3-4 Cover plate installation and disassembly of CT100-4T-11G/15P and

below power

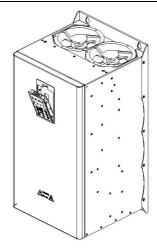


Figure 3-5 Keypad installation and disassembly of CT100-4T-15G/18.5P and

above power

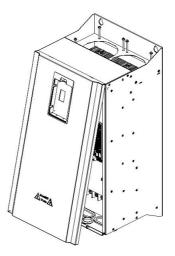


Figure 3-6 Cover plate installation and disassembly of CT100-4T-15G/18.5P and

above power

3.4Peripheral components and instructions

3.4.1 Standard peripheral components

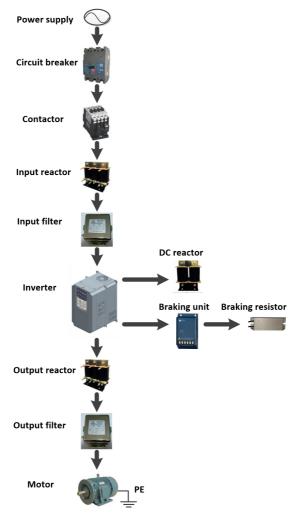


Figure 3-7 Standard peripheral components

3.4.2 Functions of peripheral components

Table 3-2 Functions of peripheral components

Name	Functions
Circuit breaker	Cut off the power and protect the latter when the latter devices have failure. Select the circuit breaker of the breaking current by 2 times of the inverter.
Leakage protector	PWM high frequency chopper voltage output causes high frequency leakage current, so select a special leakage protector.
Contactor	Frequent switching on-off the contactor causes inverter failure, so do not start or stop the inverter by switching on-off the main circuit, which will affect the life of the inverter.
Input reactor and DC reactor	Improve the power factor; Reduce the impact on the system caused by the unbalance of input power; Suppress high harmonics and reduce external conduction; Suppress the influence on the rectifier bridge caused by the pulse current.
Input and output filters	Reduce the interference of the inverter on peripheral devices.
Braking unit and braking resistor	Consume motor energy feedback and brake fast during braking.
Output reactor	Reduce the protection of the inverter due to leakage current; When the cable connecting the inverter and the motor is more than 100m, it is recommended to install the output reactor.

3.4.3 Specifications of the cables, the circuit breakers and the contactors

Table 3-3 Specifications of the cables, the circuit breakers and the contactors

	Cables of	Circuit	Rated current	Bra	king
Inverter model	main	breakers	of contactors	units/E	Braking
	circuit (m2)	(A)	(A)	resis	stors
CT100-2S-0.7G-B	2.5	16	10		
CT100-2S-1.5G-B	4	20	16		
CT100-2S-2.2G-B	4	32	25	300W	≧150Ω
СТ100-4Т-0.7G-В	2.5	10	10	30077	= 10002
CT100-4T-1.5G-B	2.5	16	10		
CT100-4T-2.2G-B	2.5	16	10		
CT100-4T-4.0G/5.5P-B	4	25	16	450W	≧100Ω
CT100-4T-5.5G/7.5P-B	4	32	25	00014/	> 750
CT100-4T-7.5G/11P-B	4	40	32	600W	≧75Ω
СТ100-4Т-11G/15Р-В	4	63	40	1200W	≧38Ω
CT100-4T-15G/18.5P-B	6	63	40		
CT100-4T-18.5G/22P-B	6	100	65	1800W	≧25Ω
CT100-4T-22G/30P-B	10	100	65		
CT100-4T-30G/37P-B	16	125	80	5000W	≧10Ω
CT100-4T-37G/45P-B	16	160	80	500000	= 1022
CT100-4T-45G/55P	25	200	95	The b	raking
CT100-4T-55G/75P	35	200	125		ors are
CT100-4T-75G/90P	50	250	160	opti	onal
CT100-4T-90G/110P	70	250	160		ding to
CT100-4T-110G/132P	95	350	350	brakin	g units

Installation and wiring

CT100-4T-132G/160P	150	400	400	when the
CT100-4T-160G/185P	185	500	400	inverter is
CT100-4T-185G/200P	240	630	400	equipped with external braking
CT100-4T-200G/220P	150*2	630	630	units.
CT100-4T-220G/250P	150*2	630	630	
CT100-4T-250G/285P	185*2	800	630	
CT100-4T-285G/315P	150*3	800	800	
CT100-4T-315G/355P	150*3	800	800	
CT100-4T-355G	150*3	1280	960	
CT100-4T-400G	150*4	1380	1035	
CT100-4T-500G	150*4	1720	1290	

Note: When the inverter is built-in with braking units, the power and resistance of the braking resistors should be as required above the table, otherwise the damage to the inverter may occur. When the braking resistors are mounted externally, you need to purchase yourselves.

3.5 Terminals wiring of main circuit

3.5.1 Terminals of main circuit

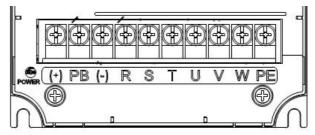


Figure 3-8 CT100-2S-2.2G, CT100-4T-11G/15P and below power

Installation and wiring

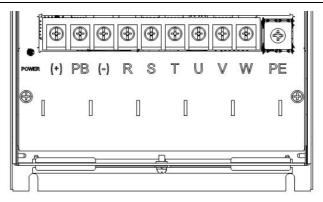


Figure 3-9 CT100-4T-15G/18.5P~CT100-4T-22G/37P

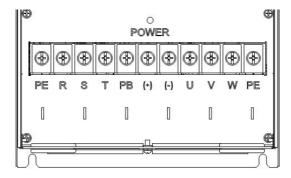


Figure 3-10 CT100-4T-30G/37P~CT100-4T-37G/45P

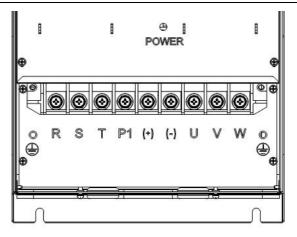


Figure 3-11 CT100-4T-45G/55P~CT100-4T-55G/75P

Figure 3-12 CT100-4T-75G/90P~CT100-4T-110G/132P

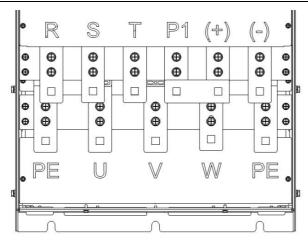


Figure 3-13 CT100-4T-132G/160P~CT100-4T-200G/220P

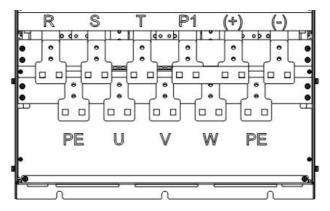


Figure 3-14 CT100-4T-220G/250P~CT100-4T-315G/355P

Installation and wiring

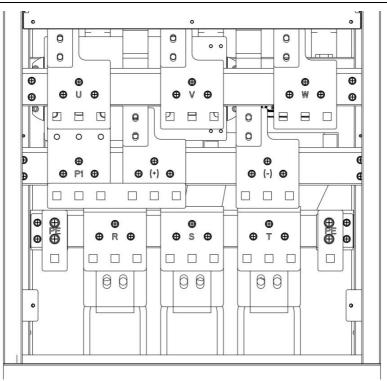


Figure 3-15 CT100-4T-355G~CT100-4T-500G

3.5.2 Functions of the main circuit terminals

Table 3-4 Functions of the main circuit terminals

Terminals	Function
R, S, T	Three-phase power input terminals
(+), (-)	Reserved terminals for external braking units, common DC bus terminals
(+), PB	Reserved terminals for external braking resistors
P1, (+)	Reserved terminals for external DC reactors
(-)	DC negative bus output terminal

U, V, W	Three-phase AC output terminals
٢	Grounding terminal (PE)

3.6 Standard wiring diagram

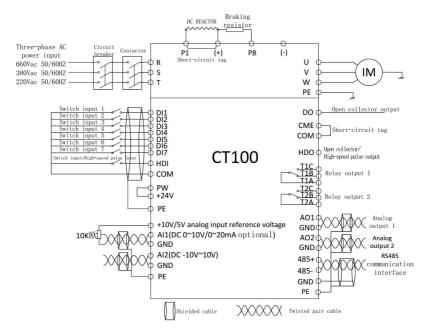


Figure 3-15 Standard wiring diagram

3.7 Wiring of terminals in main circuit

3.7.1 Power supply wiring of main circuit

1. Circuit breakers

A circuit breaker (MCCB) suitable for the inverter power is needed between the three-phase AC power supply and the power input terminals (R, S and T). The capacity of the circuit breaker is selected as $1.5 \sim 2$ times of the rated current of the inverter. For details, please refer to the table of Specifications of the cables, the circuit breakers and the contactors.

2. AC contactor

To cut off the input power of the inverter effectively at system failure, the AC contactor is needed to be installed at the input side to control the switching on-off power supply of main circuit safely.

3. Input AC reactor

To prevent the high current flows into the input power circuit and damages the rectifier part when the grid inputs high voltage, the AC reactor is needed to be installed at the input side to improve the power factor at the input side.

4. Input noise filter

Applying the noise filter can reduce the interference to the peripheral devices caused by the cables when running the inverter, as shown below:

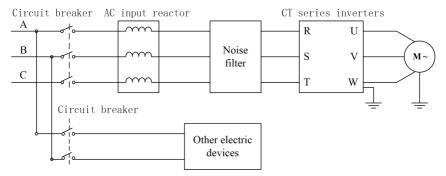


Figure 3-16 Power supply wiring of main circuit

3.7.2 Inverter wiring of main circuit

1. DC reactor

The CT100 inverter of 15kW \sim 37kW is built-in DC reactor. DC reactor can improve the power factor and avoid the rectifier circuit damage caused by the sudden change of the grid voltage or the harmonics of phase control load.

2. Braking unit and braking resistor

The CT100 inverters of the 37kW (including) and below are built-in with braking units. To consume the feedback energy during braking, it is necessary to connect the braking resistor between (+) and PB.

The CT100 inverters of the 45kW and above are equipped with external braking units. To consume the feedback energy during braking, it is necessary to connect the braking unit between (+) and (-) and the braking resistor between (+) and PB.

The wiring length of the braking resistor should be less than 5m. Pay attention to

safety and good ventilation when installing the braking resistor because its temperature will rise during energy consumption.

When connecting the braking unit, do not connect (+) and (-) reversely or connect (+) and (-) with the braking resistor directly. Otherwise, damage to the inverter or a fire may occur.

3.7.3 Motor wiring of main circuit

1. Output reactor

When the distance between the inverter and the motor exceeds 50m, the leakage current is too large due to the parasitic capacitance effect caused by the long cable to the ground, so the inverter easily comes to frequent overcurrent protection. Meanwhile, in order to avoid the motor damage, the output reactor is needed for compensation.

2. Output noise filter

The output noise filter can reduce the radio noise due to the cable between the inverter and the motor and the leakage current of the conductor, as shown below:

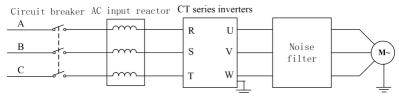


Figure 3-17 Motor wiring of main circuit

3. Feedback unit

The feedback unit can feed back the energy to the grid generated by the motor in the regenerative braking state. The feedback unit is widely used in the oil pumping unit, centrifugal machine, hoister etc.

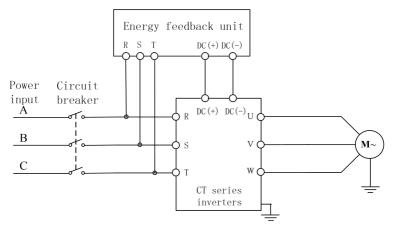


Figure 3-18 Energy feedback unit wiring of main circuit

4. Common DC bus

The common DC bus is widely applied to the multi-motor drive applications in paper machinery, textile, chemical fiber etc. At any time, some motors are in the electric state while others are in the regenerative braking (power generation) state. At this time, the regenerative energy is automatically balanced on the DC bus, which can be used for the motor in the electric state, so that the power consumption of the whole system can be reduced. Compared with the traditional way which one inverter drives one motor, the common DC bus can further save energy.

When two motors work simultaneously (such as winding and unwinding motors), one motor is in the electric state and the other motor is in the power generation state. At this time, the DC bus of the two motors can be in parallel connection and regenerative energy can be used for the motor in the electric state, so as to save energy, as shown below:

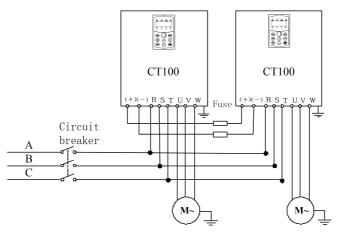


Figure 3-19 Wiring of common DC bus

Note: If connecting the DC bus directly for two inverters, make sure the models are the same and power on at the same time.

5. Grounding cable (PE)

To guarantee safety and avoid electric shock or fires, the grounding terminals (PE) of the inverter should be grounded properly. Thick and short grounding cables, more than 3.5mm2 multi-strand copper cables should be applied. When multiple inverters are grounded, it is recommended not to use a common grounding cable in case of short circuit.

3.8Wiring of control circuit

3.8.1 Precautions

Please apply the multi-core shielded cable or twisted pair to connect the control terminals. When using the shielded cable (near one side of the inverter), connect it to the PE terminal of the inverter. Keep the control cable away from the main circuit and strong power circuit (including power cables, motor cables, relays, contactors, etc.) more than 20cm. Vertical wiring is recommended instead of parallel wiring to prevent the inverter malfunction caused by external interference.

3.8.2 Schematic diagram of the control plate

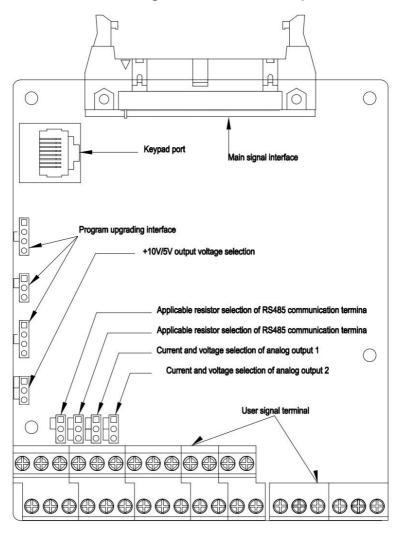


Figure 3-20 Schematic diagram of the control plate

3.8.3 Pins of the control plate

Table 3-5 Pin instructions of the control plate

No.	Instructions		
	RS485 ter	minating resistor setting	
X1		Short circuit the pins 1 and 2 of X1 by short-circuit module, the terminating resistor of 120Ω is used for RS485 bus;	
		Short circuit the pins 2 and 3 of X1 by short-circuit module, the terminating resistor is not used for RS485 bus;	
	X1 RS485	When the short-circuit module is not used, the terminating resistor is not used for RS485 bus.	
	Analog inp	out 1 voltage and current selection	
X2		Short circuit the pins 1 and 2 of X2 by short-circuit module, the analog input 1 is voltage input (0 ${\sim}10V$);	
		Short circuit the pins 2 and 3 of X2 by short-circuit module, the analog input 1 is current input (0 ${\sim}20\text{mA});$	
		When the short-circuit module is not used, the analog input 1 is voltage input (0 ${\sim}10V).$	
	Analog output 1 voltage and current selection		
X3		Short circuit the pins 1 and 2 of X3 by short-circuit module, the analog output 1 is voltage output (0 \sim 10V);	
		Short circuit the pins 2 and 3 of X3 by short-circuit module, the analog output 1 is current output (0 ${\sim}20mA).$	
	Analog ou	tput 2 voltage current selection	
X4		Short circuit the pins 1 and 2 of X4 by short-circuit module, the analog output 2 is voltage output (0 \sim 10V);	
	X4 AO2	Short circuit the pins 2 and 3 of X4 by short-circuit module, the analog output 2 is current output (0 \sim 20mA).	

X1 3	1 10V SV X13	Short circuit the pins 1 and 2 of X13 by short-circuit module, the terminal +10V/5V supplies power +10V; Short circuit the pins 2 and 3 of X13 by short-circuit module, the terminal +10V/5V supplies power +5V.	
X6			
X7	Special pins for control board CPU downloading (factory set, unnecessary to change)		
X8			
X9	The interface of the main signal for connecting the signals between the control board and the power board		

3.8.4 Terminals of control circuit

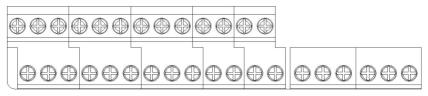


Figure 3-21 Terminals layout of control circuit

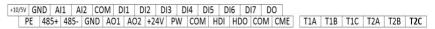


Figure 3-22 Terminals names of control circuit

3.8.5 Functions of terminals in control circuit

Table 3-6 Functions of terminals in control circuit

Categor y	Terminal name	Terminal function	Technical specification
	+24V	+24V power supply	24V±10%, internal isolation from GND. Max. load 200mA
Switch input	PW	External power input terminal (power supply of digital input terminal)	Short circuit with +24V by default

Installation and wiring

	DI1~DI7	Switch input terminals 1~7	Input specifications: 24V, 5mA
	HDI	High speed pulse input or switch input	Pulse input frequency range: 0~50kHz High level voltage: 24V
	СОМ	+24V power supply or external power ground	Internal isolation from GND
	DO	Open collector output, common CME terminal	External voltage range: 0 \sim 24V
Switch	CME	Common terminal of open collector output	Short circuit with COM by default
Switch output	HDO	High speed pulse output or open collector output, common COM terminal	Pulse output frequency range: $0\sim$ 50kHz
	СОМ	HDO common terminal	Internal isolation from GND
Analog input	+10/5V	The local supplies +10V or 5V power output	Output voltage: 10V or 5V available via X13, optional Output current range: $0\sim$ 50mA (If the potentiometer is connected between +10V/+5V and GND, the resistance should not be less than 2k Ω .)
	Al1	Analog input terminal 1	Input voltage and current are optional Input voltage range: 0~10V Input current range: 0/4~20mA
	AI2	Analog input terminal 2	Input voltage range: -10~10V
	GND	Analog ground	Internal isolation from COM
Analog output	AO1~AO2	Analog output terminal	Output voltage and current are optional Output voltage range: 0~10V Output current range: 0~20mA
	GND	Analog ground	Internal isolation from COM

Installation and wiring

Relay output	T1A/T1B/T1C	Relay output	T1A-T1B: normally closed T1A-T1C: normally open Contact capacity: 250VAC/3A, 30VDC/1A
	T2A/T2B/T2C	Relay output	T2A-T2B: normally closed T2A-T2C: normally open Contact capacity: 250VAC/3A, 30VDC/1A
Commun ication interface	485+/485-	RS485 communication interface	RS485 communication interface

3.8.6 Wiring of switch inputs

By using the internal +24V power supply of the inverter, the wiring of the external controller for the NPN-type sink current is as shown below:

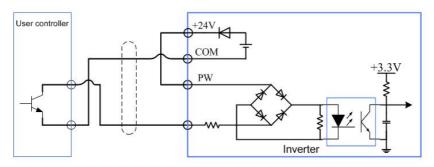


Figure 3-23 Wiring of NPN type sink current

By using the internal +24V power supply of the inverter, the wiring of the external controller for the PNP-type source current is as shown below:

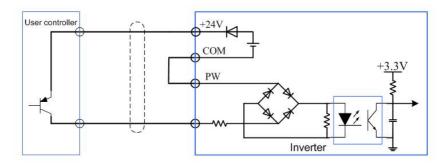


Figure 3-24 Wiring of PNP type source current

Note: Be sure to remove the short-circuit plate between +24V and PW and connect the plate between PW and COM.

By using the external power supply, the wiring of the external controller for the NPN-type sink current is as shown below:

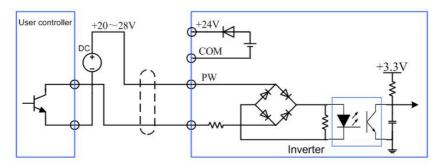


Figure 3-25 Wiring of NPN type sink current

Note: Be sure to remove the short-circuit plate between +24V and PW.

By using the external power supply, the wiring of the external controller for the PNP-type source current is as shown below:

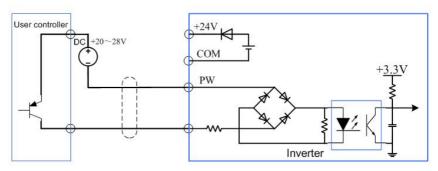


Figure 3-26 Wiring of PNP type source current

Note: Be sure to remove the short-circuit plate between +24V and PW.

3.9 EMC problems in wiring

3.9.1 General knowledge of EMC

EMC is the abbreviation of electromagnetic compatibility, which means the device or system has the ability to work normally in the electromagnetic environment and will not generate any electromagnetic interference to other equipment. EMC includes two subjects: electromagnetic interference and electromagnetic anti-jamming.

According to the transmission mode, Electromagnetic interference can be divided into two categories: conducted interference and radiated interference.

Conducted interference is the interference transmitted by conductor. Therefore, any conductors such as wire, transmission line, inductor and capacitor are the transmission channels of interference.

Radiated interference is the interference transmitted in electromagnetic waves, and the energy is inversely proportional to the square of distance.

Three necessary conditions or essentials of electromagnetic interference are: interference source, transmission channel and sensitive receiver. For customers, the solution of EMC problem is mainly in transmission channels because the device as interference source or receiver cannot be changed.

Different electric and electronic devices, because of its various EMC standards or degrees, have different EMC capacities.

The operating principle of the inverter determines that it can produce certain electromagnetic interference noise. And the same time the inverter needs to be designed with certain anti-jamming ability to ensure the smooth working in certain electromagnetic environment.

3.9.2 Noise control

All the connections to the control terminals must use shielded wire. And the shield layer of the wire must ground near the wire entrance of the inverter. The ground mode is 360 degree annular connection formed by cable clips. It is strictly prohibitive to connect the twisted shielding layer to the ground of the inverter, which greatly decreases or loses the shielding effect.

Power supply wiring: The shielding layer of power supply incoming cables of the inverter shall be grounded reliably. It is strictly prohibitive to route the power cables and control cables in parallel.

Device categorization: There are different electric devices in the same distribution system, which have different ability of emitting and withstanding electromagnetic noise. Therefore, it needs to categorize these devices into strong noise device and noise sensitive device. The same kind of devices needs to be placed in the same area, and the distance between devices in different categories needs to be more than 20cm.

Wiring in the control cabinet: During wiring, signal cables and power cables need to be arranged in different areas. It is strictly prohibitive to arrange them in parallel or interlacement at a close distance (less than 20cm) or tie them together. If the signal cables have to cross the power cables, they need to be arranged in 90 degree angle.

3.9.3 Grounding

The inverter must be grounded safely and reliably in operation. Grounding has the priority in all EMC methods because it does not only ensure the safety of equipment and persons, but also it is the simplest, most effective and lowest-cost solution for EMC problems.

Three categories of grounding: special pole grounding, common pole grounding and series-wound grounding. Different control system needs to use special pole grounding, different devices in the same control system needs to use common pole grounding, and different devices connected by the same power cables needs to use series-wound grounding.

3.9.4 Leakage current

Leakage current includes cable leakage current and ground leakage current. The size depends on the distributed capacitance and the carrier frequency of the inverter in distribution.

The ground leakage current refers to the leakage current flowing through the

common ground wire, which not only flows into the inverter but also may flow into other devices via the ground wire, which may lead the leakage circuit breaker, relay or other devices to malfunction.

Cable leakage current refers to the leakage current flowing through the distributed capacitance among the output cables of the inverter. The size of the leakage current is related to the carrier frequency of the inverter, the length of the motor cable and the cross-sectional area of the cable. The higher the carrier frequency of the inverter, the longer the motor cable or the larger the cross-sectional area of the cable, the larger the leakage current.

Method to reduce the leakage current:

Reduce the carrier frequency. When the motor cable is long (50m or above), the AC reactor or sine wave filter should be installed in the output side of the inverter. When the motor line is longer, a reactor should be installed at a distance.

4 Keypad operation procedure

4.1 Keypad

The keypad consists of three parts for unit/status LEDs displaying, parameters displaying and key operation, as shown below.

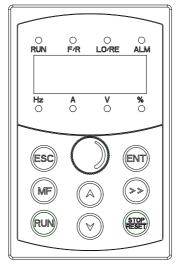


Figure 4-1 Keypad

4.1.1 Unit and status LEDs

Table 4-1 Unit and status LEDs

S	Symbol Name		meaning		
	Hz	Frequency LED	The unit of the current displayed parameter is Hz.		
Unit I	А	Current LED	The unit of the current displayed parameter is A.		
LEDs	V	Voltage LED	The unit of the current displayed parameter is V.		
	%	Percentage LED	The current displayed parameter is a percentage.		

Keypad operation procedure

St	RUN	Run status LED	On: The inverter is running. Off: The inverter stopped. Blinking: The inverter is in dormant state.
			On: The inverter is in the reverse running state. Off: The inverter is in the forward running state or stopped.
Status LEDs	LO/RE	Run command reference LED	Off: keypad run command reference mode Blinking: terminal run command reference mode On: communication run command reference mode
	ALM	Alarm LED	Off: no fault alarm Blinking: overload pre-alarm On: fault alarm

4.1.2 Code displaying zone

5-figure LED display can display the monitoring data such as the set frequency and the output frequency and alarm codes.

4.1.3 Buttons

Table 4-2	Functions of	buttons
-----------	--------------	---------

Button	Name	Function
ESC	Program ming/ Exit key	Enter or exit the 1st level menu; Return to the 1st level menu from the 2nd level menu; Return to the 2nd level menu from the 3rd level menu.
MF	Multi-func tion key	Operate according to multi-function selection [2]
RUN	Run key	In the keypad run command reference mode, the key is used for start control of the inverter. After setting the parameter self-identification, the key is

Keypad operation procedure

		used to start the inverter for parameter self-identification.
		After function group confirmation of the 1st level menu, enter the 2nd level menu;
	Enter key	After function group confirmation of the 2nd level menu, enter the 3rd level menu;
	Linerkey	After function parameters setting confirmation of the 3rd level menu, return to the 2nd level menu;
		In password verification state, the password input is completed.
		Function group edit step[1] selection in the 1st/2nd level menu;
>>	Right-shift	Function parameters settings edit step selection in the 3rd level menu;
	key	In stop parameter display status, running parameter display status and fault display state, display parameters selection;
		Edit bit selection in password verification state.
	Stop/Res et key	In keypad run command reference mode, the key is used for stop control of the inverter;
RESET		In other run command reference modes, the key is used for stop protection of the inverter[3];
		At fault or stop state, the key is used as a reset key to clear the fault alarm information.
	UP key	Increase function group in the 1st/2nd level menu progressively;
(\mathbb{A})		Increase function parameters settings in the 3rd level menu progressively;
		Increase the set frequency progressively.
	DOM	Decrease function group in the 1st/2nd level menu progressively;
(\land)	DOWN key	Decrease function parameters settings in the 3rd level menu progressively;
		Decrease the set frequency progressively.

Potentiom	Adjust the frequency;	
eter	Adjust the torque.	

Note: [1] Select the edit step to be ones, tens or hundreds via the right-shift key.

[2] See function code (F05.04) for multi-function selection.

[3] After sending a stop command, you need to run the clear command in the current run command reference mode.

4.2 Operation procedure

4.2.1 Parameter setting

The three-level menu is:

1. Group number of function code (first-level menu);

2. Tab of function code (second-level menu);

3. Set value of function code (third-level menu).

Note: 8.8.8.8 is displayed initially after power on and the digital reference frequency is displayed after initialization. When you need to modify the parameters, press ESC to enter the first-level menu and F00 will be displayed. Modify the function group by or to F00-F15, press ENT to enter the second-level menu, press ENT key again to enter the third-level menu, modify the parameters by or , press ENT to write into the control board and press ESC to return.

In the third-level menu, if the bit of the parameter is not blinking, it is unmodifiable, the reasons may be:

1) The function code is an unmodifiable parameter, such as the actual detection parameters, fault record parameters, operating record parameters etc.

2) The function code cannot be modified in the running state.

4.2.2 Fault reset

After the inverter has fault, the inverter will inform the relevant fault information. You can reset the inverter via the <u>STOP/RESET</u> key or the fault reset terminal (F6). The inverter will be in standby mode after fault reset. If the inverter is in a fault state and you do not reset it, the inverter cannot run and remains in the running protection state.

4.2.3 Motor parameter self-identification

To obtain good control performance, the motor must be self-identification of the parameters to obtain the exact parameters of the controlled motor; you must input correct motor parameters according to the name plate before identification, CT series inverters will match the parameters with the standard motor parameters.

The operation procedures for motor parameters identification are as follows:

First, select the keypad run command mode for the run command (F00.01).

Then enter the following parameters according to the actual motor parameters:

F01.02: Rated motor power;

F01.03: Rated motor frequency;

F01.04: Rated motor speed;

F01.05: Rated motor voltage;

F01.06: Rated motor current.

Note: The motor should be decoupled from the load. Otherwise, the identification parameters may be incorrect. Set F01.12 to 1, if the motor is not decoupled from the load, set F01.12 to 2 (see description of Function code F01.12 for detailed motor identification) and then press the $\boxed{\text{RUN}}$ key, the inverter will automatically calculate the following parameters of the motor:

F01.07: Motor stator resistance;

F01.08: Motor rotor resistance;

F01.09: Motor stator and rotor inductance;

F01.10: Motor stator and rotor mutual inductance;

F01.11: Motor no-load current;

After the motor parameter identification is completed, the digital tube displays END, otherwise the self-identification failed.

4.2.4 Password setting

CT series inverters provide user password protection function. When F05.03 is set to non-zero, which is the user password. Exit the editing status of function code and password protection will take effect in 60s. Press the **ESC** key again to enter the editing status of function code and "8.8.8.8.8" will be displayed. You need to input correct user password, or cannot enter.

To disable the password protection function, set F05.03 to 0.

4.3 Display the parameters

4.3.1 Running state

In the running state, the inverter has a total of 19 state parameters to be selected whether to display, including the running frequency, set frequency, bus voltage, output current, output voltage, running speed, linear speed, output power, output torque, input and output terminal status, PID reference, PID feedback, high speed pulse HDI frequency, count value, PLC and multi-step speed, torque setting, potentiometer value, Al1, Al2, motor overload percentage, inverter overload percentage etc. The parameters can be selected by F05.08 and F05.09 in binary bit. Press the selected by F05.08 and F05.09 in binary bit. Press the MF key to switch the left to display the selected parameters.

4.3.2 Standby state

In the stop, fault and running state, a variety of status parameters can be displayed. The parameter can be selected by F05.10 in binary bit.

In the stop state, the inverter has a total of 10 state parameters to be selected whether to display, including the set frequency, bus voltage, input and output terminal status, potentiometer value, Al1, Al2, high speed pulse HDI frequency, PID reference, PID feedback, PLC or multi-step speed etc. The parameters can be selected by F05.10 in binary bit. Press the $\boxed{}$ key to switch the selected parameters in the right and press the $\boxed{}$ key to switch the selected parameter in the left.

4.3.3 Fault state

In the fault state, both the fault state and the stop state will be displayed. Press the $\boxed{}$ key to switch to the right to display the selected parameters, press the \boxed{MF} key to switch the left to display the selected parameters.

CT series inverters provide a variety of fault information. Please refer to Fault Tracking.

4.4 Displayed words of code displaying zone

Table 4-3 Displayed words

Keypad operation procedure

Displayed word	Meaning	Displayed word	Meaning	Displayed word	Meaning	Displayed word	Meaning
B.	0	B.	1	B_{\cdot}	2	B.	3
B.	4	B.	5	B.	6	B.	7
B .	8	B .	9	B .	А	B	b
B_{\cdot}	С	B.	d	B .	Е	B_{\cdot}	F
B_{\circ}	Н	B.	Ι	B.	L	B .	Ν
B .	0	8.	Ρ	B.	S	B .	Т
B	U	8.	V	8.	•		

4.5 Power on at the first time

Please carry out wiring in accordance with the technical requirements in Chapter 3. The flow chart for power on at the first time is as follows:

Keypad operation procedure

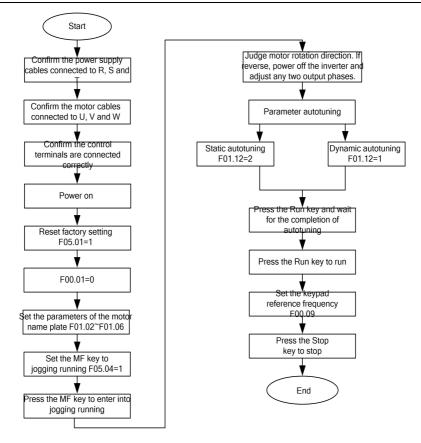


Figure 4-2 First power flow chart

5 Function parameters

CT100 series inverters have 16 groups of function codes F00 \sim F14 and factory group F15. The function codes have been divided into three levels. For example, "F08.08" means the eighth function code in the P8 function group. F15 group is factory group, and users are forbidden to access these parameters.

For the convenience of function codes setting, the function group number corresponds to the first level menu, the function code corresponds to the second level menu and the function code parameter corresponds to the third level menu.

1. Below are the instructions of the tables for function codes:

The first line "Function code": codes of function parameter group and parameters

The second line "Name": full name of function parameters

The third line "Detailed instruction of parameters": Detailed illustration of the function parameters

The forth line "Default value": the original factory set value of the function parameters

The fifth line "Modify": the modifying character of function codes (the parameters can be modified or not and the modifying conditions), below are the instructions:

"O": means the set value of the parameter can be modified in stop and running state;

"arguingthargent": means the set value of the parameter cannot be modified in running state;

"•": means the value of the parameter is the real detection value which cannot be modified.

(The inverter has limited the automatic inspection of the modifying character of the parameters to help users avoid modifying by mistake)

The sixth line "No.": the serial number of the function parameters

2. "Parameter radix" is decimal (DEC), if the parameter is expressed by hex, then the parameter is separated from each other when editing. The setting range of certain bits are hex ($0 \sim F$).

3. "Default value" means the function parameter will restore to the default value during default parameters restoring. But the detected parameter or recorded value will not be restored.

4. For a better parameter protection, the inverter provides password protection to the parameters and only factory and administrator can modify the function codes. After setting the user password (F05.03 is non-zero) and press the **ESC** key to enter into the parameter editing state, the system goes into user password

verification and displays "0. 0. 0. 0. 0.". You can enter only by inputting the correct user password. For the factory setting parameter zone, only factory can enter. (Remind that the users cannot modify the factory parameters by themselves; otherwise, if the parameter setting is incorrect, damage to the system may occur). If the password protection is unlocked, the user can modify the password freely and the user password will be subject to the last one. When F05.03=0, the user password is disabled.

5. When modifying the function parameters through 485 communication, the function of user password follows the above rules.

Function code	Name	Detailed instruction of parameters	Min. unit	Default value	Modify	No.
F00 Group	Basic function					
F00.00	Motor control mode	0: V/F control 1: speed sensorless vector control 2: torque control (open loop vector control)	1	0	Å	
F00.01	Run command channel	0: keypad run command channel (LED off) 1: terminal running command channel (LED flickering) 2: 485 run command channel (LED on)	1	0	*	
F00.02	Main frequency source X	0: keypad digit (F00.09) 1: keypad potentiometer Al0 2: analog input Al1 3: analog input Al2 4: HDI pulse input 5: process PID output 6: multi-step speed 7: simple PLC 8: 485 communication	1	0	0	

List of function parameters

Function code	Name	Detailed instruction of parameters	Min. unit	Default value	Modify	No.
F00.03	Auxiliary frequency source Y	0: keypad potentiometer Al0 1: analog input Al1 2: analog input Al2 3: HDI pulse input 4: process PID output 5: multi-step speed 6: 485 communication	1	0	0	
F00.04	Reference object of Y frequency source	0: relative to the max. frequency 1: relative to frequency source X	1	1	0	
F00.05	Frequency combination reference operation	0: X 1: Y 2: X+Y 3: Max (X, Y)	1	0	0	
F00.06	Max. frequency	F00.07~600.00Hz	0.01Hz	50.00Hz	\$	
F00.07	Upper limit frequency	F00.08~F00.06 (Max. frequency)	0.01Hz	50.00Hz	0	
F00.08	Lower limit frequency	0.00Hz \sim F00.07 (upper limit of running frequency)	0.01Hz	0.00Hz	0	
F00.09	Keypad frequency setting	0.00Hz \sim F00.06 (Max. frequency)	0.01Hz	50.00Hz	0	
F00.10	Run direction	0: positive 1: reverse 2: prohibit reverse	1	0	☆	

Function code	Name	Detailed instruction of parameters	Min. unit	Default value	Modify	No.
F00.11	Carrier frequency	1.0~15.0kHz	0.1kHz	Depend on model	0	
F00.12	PWM optimization	0: PWM optimization 1 1: PWM optimization 2 2: PWM optimization 3	1	0	\$	
F00.13	AVR function	0: invalid 1: valid	1	1	0	
F00.14	ACC time 0	0.1~3000.0s	0.1s	Depend on model	0	
F00.15	DEC time 0	0.1~3000.0s	0.1s	Depend on model	0	
F01 Group	Motor paramete	rs				
F01.00	Inverter type	0: G type 1: P type Note: If you want to modify the parameters, the motor power and other parameters should also be manually modified as needed.	1	Depend on model	\$	
F01.01	Motor type	0: asynchronous motor 1: reserved	1	0		
F01.02	Rated power of asynchronous motor	0.4~3000.0kW	0.1KW	Depend on model	${\simeq}$	
F01.03	Rated frequency of asynchronous motor	10.00Hz∼F00.06 (Max. frequency)	0.01Hz	50.00Hz	\$	

Function code	Name	Detailed instruction of parameters	Min. unit	Default value	Modify	No.
F01.04	Rated speed of asynchronous motor	0~36000RPM	1RPM	Depend on model	☆	
F01.05	Rated voltage of asynchronous motor	0~500V	1V	Depend on model	\$	
F01.06	Rated current of asynchronous motor	0.8~6000.0A	0.1A	Depend on model	${\swarrow}$	
F01.07	Stator resistance of asynchronous motor	0.001∼65.535Ω	0.001Ω	Depend on model	0	
F01.08	Rotor resistance of asynchronous motor	0.001∼65.535Ω	0.001Ω	Depend on model	0	
F01.09	Inductance of asynchronous motor	0.1∼6553.5mH	0.1mH	Depend on model	0	
F01.10	Mutual inductance of asynchronous motor	0.1∼6553.5mH	0.1mH	Depend on model	0	
F01.11	Non-load current of asynchronous motor	0.1∼6553.5A	0.1A	Depend on model	0	
F01.12	Motor parameters autotuning	0: no actuation 1: dynamic autotuning 2: static autotuning		0	☆	

Function parameters

Function code	Name	Detailed instruction of parameters	Min. unit	Default value	Modify	No.
F02 Group	Start and stop o	ontrol				
		0: start at the starting frequency				
F02.00	Start mode	1: start after DC braking	1	0	☆	
		2: start after rotating speed tracking				
F02.01	Start delay time (reserved)	0.0∼80.0s	0.1s	0.0s	0	
F02.02	Starting frequency	0.00~20.00Hz	0.01Hz	1.50Hz	☆	
F02.03	Hold time of starting frequency	0.0∼60.0s	0.1s	0.0s	☆	
F02.04	DC braking current before start	0.0~160.0%	0.1%	0.0%	☆	
F02.05	DC braking time before start	0.0∼60.0s	0.1s	0.0s	☆	
F02.06	ACC and DEC mode	0: linear type 1: S curve (reserved)	1	0	☆	
F02.07	Terminal characteristic selection after power on	0: run command is invalid 1: run command is valid	1	0	\$	
F02.08	Restart after power off	0: no actuation 1: actuation	1	0	0	
F02.09	Waiting time for restart	0.0∼3000.0s	0.1s	0.0s	0	

Function code	Name	Detailed instruction of parameters	Min. unit	Default value	Modify	No.
F02.10	Stop mode	0: decelerate to stop 1: coast to stop	1	0	0	
F02.11	Dead time of FWD/REV	0.0~2000.0s	0.1s	0.0s	0	
F02.12	Starting frequency before stop DC braking	0.00~F00.06	0.1s	0.00Hz	0	
F02.13	Waiting time before stop DC braking	0.0∼60.0s	0.1s	0.0s	0	
F02.14	Stop DC braking current	0.0~160.0%	0.1%	0.0%	0	
F02.15	Stop DC braking time	0.0∼60.0s	0.1s	0.0s	0	
F02.16	Frequency for deceleration to stop (reserved)	F00.08~50.00Hz	0.01Hz	0.00Hz	0	
F02.17	Delay time of stop frequency (reserved)	0.0∼1000.0s	0.1s	0.0s	0	
F02.18	Actuation when running frequency is less than lower limit frequency	0: run at lower limit frequency 1: stop 2: stand-by	1	0	Å	
F02.19	Delay time of dormancy wake up	0.0~3000.0s	0.1s	0	X	
F03 Group	V/F control					

Function code	Name	Detailed instruction of parameters	Min. unit	Default value	Modify	No.
F03.00	V/F curve	0: straight line V/F curve 1: multi-dots V/F curve 2: 2.0 th power low torque V/F curve	1	0	☆	
F03.01	Torque compensation	0.0% (automatic), 0.1% \sim 10.0%	0.1%	1.0%	0	
F03.02	Torque compensation cut-off	$0.0\%{\sim}50.0\%$ (relative to motor rated frequency)	0.1%	20.0%	\$	
F03.03	V/F frequency 1	0.00Hz~F03.05	0.01Hz	0.00Hz	0	
F03.04	V/F voltage 1	0.0% \sim 100.0% (motor rated voltage)	0.1%	00.0%	0	
F03.05	V/F frequency 2	F03.03~F03.07	0.01Hz	00.00Hz	0	
F03.06	V/F voltage 2	0.0% \sim 100.0% (motor rated voltage)	0.1%	00.0%	0	
F03.07	V/F frequency 3	F03.05 \sim F01.03 (motor rated frequency)	0.01Hz	00.00Hz	0	
F03.08	V/F voltage 3	0.0% \sim 100.0% (motor rated voltage)	0.1%	0.0%	0	
F03.09	Slip compensation gain	0.0~200.0%	0.1%	0.0%	0	
F03.10	Frequency threshold of surge suppression	0.00Hz \sim F00.06 (Max. frequency)	0.01Hz	30.00Hz	0	

Function code	Name	Detailed instruction of parameters	Min. unit	Default value	Modify	No.
F03.11	Low frequency surge suppression factor	0.0~1.0	0.1	0.2	0	
F03.12	High frequency surge suppression factor	0.0~1.0	0.1	0	0	
F03.13	Motor energy saving operation	0: invalid 1: valid	1	0	☆	
F04 Group	Vector control					
F04.00	Low speed proportional gain	0~150	1	25	0	
F04.01	Low speed integral time	0.01~15.00s	0.01s	0.60s	0	
F04.02	Low speed switching frequency	0.00Hz~F04.05	0.01Hz	5.00Hz	0	
F04.03	High speed proportional gain	0~150	1	25	0	
F04.04	High speed integral time	0.01~10.00s	0.01s	1.00s	0	
F04.05	High speed switching frequency	F04.02~F00.06 (Max. frequency)	0.01Hz	10.00Hz	0	
F04.06	VC slip compensation factor	50%~200%	1%	100%	0	

Function code	Name	Detailed instruction of parameters	Min. unit	Default value	Modify	No.
F04.07	Reserved	50%~200%	1%	100%	0	
F04.08	Speed loop filter time	0ms \sim 100ms	1ms	0ms	0	
F04.09	Upper torque	0.0 \sim 200.0% (inverter rated	0.1%	G type 150.0%	- 0	
104.03	limit	current)	0.1%	P type 120.0%		
F04.10	Torque setting	0: keypad (F04.11) 1: Al1 2: Al2 3: Pulse input HDI 4: Multi-step torque 5: 485 communication (1~5: 100% corresponds to 2 times of inverter rated current)	1	0	0	
F04.11	Keypad torque	-200.0% \sim 200.0% (inverter rated current)	0.1%	50.0%	0	
F04.12	Upper limit frequency setting	0: keypad (F00.07) 1: Al1 2: Al2 3: Pulse input HDI 4: multi-step speed 5: 485 communication (1~5: 100% corresponds to the Max. frequency)	1	0	0	
F04.13	Min. excitation current (reserved)	0.0%~50.0%	0.1%	10.0%	0	

Function parameters

Function code	Name	Detailed instruction of parameters	Min. unit	Default value	Modify	No.
F05 Group	HMI interface					
F05.00	Chinese and English language	0: Chinese 1: English (reserved)	1	0	*	
F05.01	Parameter initialization	0: no actuation 1: restore default value 2: clear fault records	1	0	\$	
F05.02	Parameter copy	0: reserved 1: reserved	1	0	☆	
F05.03	User password	0~65535	1	0	0	
F05.04	Functions of MF key	0: left-shift key to switch display state 1: jogging running 2: FWD/REV switch 3: clear UP/DOWN setting 4: non-factory parameter debugging	1	0	0	
F05.05		 0: only valid for keypad control 1: valid for keypad and terminal control at the same time 2: valid for keypad and communication control at the same time 3: valid for all control modes 	1	0	0	
F05.06	Rotating speed display correction	0.1~999.9%	0.1%	100.0%	0	

Function code	Name	Detailed instruction of parameters	Min. unit	Default value	Modify	No.
F05.07	Linear speed display correction	0.1~999.9%	0.1%	1.0%	0	
		BIT0: running frequency (Hz on)				
		BIT1: set frequency (Hz flickers)				
		BIT2: bus voltage (V on)				
	Displayed parameters 1	BIT3: output current (A on)				
		BIT4: output voltage (V on)				
		BIT5: rotating speed (rpm on)				
		BIT6: linear speed				
F05.08		BIT7: output power (% on)	0X01	07FF	0	
	when running	BIT8: output torque (% on)				
		BIT9: input terminal status				
		BIT10: output terminal status				
		BIT11: PID reference (% on)				
		BIT12: PID feedback (% on)				
		BIT13: Pulse HDI frequency				
		BIT14: Count value				
		BIT15: PLC and current stage of multi-step speed				

Function code	Name	Detailed instruction of parameters	Min. unit	Default value	Modify	No.
F05.09	Displayed parameters 2 when running	BIT0: torque setting (% on)	0X01	0	0	
		BIT1: keypad potentiometer Al0 (V on)				
		BIT2: analog input AI1(V on)				
		BIT3: analog input AI2(V on)				
		BIT4: motor overload percentage (% on)				
		BIT5: inverter overload percentage (% on)				
		BIT6 \sim 15: reserved				
F05.10	Displayed parameters 1 at stop	BIT0: set frequency (Hz flickers)	0X01	00FF	0	
		BIT1: bus voltage (V on)				
		BIT2: input terminal status				
		BIT3: output terminal status				
		BIT4: potentiometer (V on)				
		BIT5: Al1 (V on)				
		BIT6: AI2 (V on)				
		BIT7: Pulse HDI frequency (Hz on)				
		BIT8: PID reference (% on)				
		BIT9: PID feedback (% on)				
		BIT10: PLC and current stage of multi-step speed				
		BIT11: torque setting (% on)				
		BIT12 \sim BIT15: reserved				
F05.11	Inverter rated power	0.4~3000.0kW	0.1KW	Depend on model	•	
F05.12	Inverter rated current	0.0~6000.0A	0.1A	Depend on model	•	

Function code	Name	Detailed instruction of parameters	Min. unit	Default value	Modify	No.			
F05.13	Converting module temperature	-20.0∼100.0° C	0.1℃		•				
F05.14	Rectification bridge temperature	-20.0~100.0℃	0.1 ℃		•				
F05.15	Software version	0.00~655.35	0.01		•				
F05.16	Accumulative running time	$0{\sim}65535$ h	1h		•				
F06 Group Input terminals									
F06.00	HDI input mode	0: pulse input 1: switch input	1	0	*				
F06.01	Functions of DI1 terminal	0: invalid 1: forward running	1	1	\$				
F06.02	Functions of DI2 terminal	2: reverse running 3: forward jogging 4: reverse jogging	1	4	\$				
F06.03	Functions of DI3 terminal	5: three-wire running 6: coast to stop	1	7	Å				
F06.04	Functions of DI4 terminal	7: fault reset 8: emergency stop 9: external fault input	1	0	☆				
F06.05	Functions of DI5 terminal	10: run pause 11: terminal UP	1	0					

Function code	Name	Detailed instruction of parameters	Min. unit	Default value	Modify	No.
	Functions of DI6 terminal	12: terminal DOWN				
F06.06		13: UP/DOWN setting clear	1	0		
		14: UP/DOWN setting cleared temporarily				
F06.07	Functions of	15: multi-step speed pause	1	0		
1 00.07	DI7 terminal	16: multi-step speed terminal 1		0		
		17: multi-step speed terminal 2				
		18: multi-step speed terminal 3				
		19: multi-step speed terminal 4				
		20: simple PLC stop reset				
		21: simple PLC pause				
	Functions of	22: X setting and Y setting switching				
		23: (X+Y) setting and X setting switching				
F06.08	HDI terminal switch input	24: (X+Y) setting and Y setting switching	1	0	$\stackrel{\sim}{\sim}$	
		25: ACC/DEC time selection 1				
		26: ACC/DEC time selection 2				
		27: ACC/DEC disabled				
		28: torque control disabled				
		29: Counter triggered				
		30: PID control pause				
		31: wobble pause (at the current frequency)				
		32: wobble reset (return to				

Function code	Name	Detailed instruction of parameters	Min. unit	Default value	Modify	No.
		center frequency)				
		33: counter reset				
		34 \sim 39: reserved				
F06.09	DI terminal filter time	1~15	1	5	0	
F06.10	Terminal control running mode	0: two-wire control mode 1 1: two-wire control mode 2 2: three-wire control mode 1 3: three-wire control mode 2	1	0	☆	
F06.11	Adjust step length of terminal UP/DOWN frequency	0.01∼50.00Hz/s	0.01Hz/s	0.50Hz/s	0	
F06.12	Adjust control of keypad and terminal UP/DOWN frequency	0: valid, hold on power off 1: valid, clear after power off 2: invalid 3: valid in running, clear after power off	1	0	0	
F06.13	Keypad potentiometer Al0 lower limit	0.00V~F06.15	0.01V	0.00V	0	
F06.14	Corresponding setting of keypad potentiometer Al0 lower limit	-100.0%~100.0%	0.1%	0.0%	0	
F06.15	Keypad potentiometer Al0 upper limit	F06.13~10.00V	0.01V	10.00V	0	

Function code	Name	Detailed instruction of parameters	Min. unit	Default value	Modify	No.
F06.16	Corresponding setting of keypad potentiometer Al0 upper limit	-100.0%~100.0%	0.1%	100.0%	0	
F06.17	Keypad potentiometer Al0 filter time	0.00s∼10.00s	0.01s	0.10s	0	
F06.18	AI1 lower limit	0.00V~F06.20	0.01V	0.00V	0	
F06.19	Corresponding setting of AI1 lower limit	-100.0%~100.0%	0.1%	0.0%	0	
F06.20	AI1 upper limit	F06.18~10.00V	0.01V	10.00V	0	
F06.21	Corresponding setting of AI1 upper limit	-100.0%~100.0%	0.1%	100.0%	0	
F06.22	AI1 input filter time	0.00s~10.00s	0.01s	0.10s	0	
F06.23	AI2 lower limit	-10.00V~F06.25	0.01V	0.00V	0	
F06.24	Corresponding setting of Al2 lower limit	-100.0%~100.0%	0.1%	0.0%	0	
F06.25	Al2 upper limit	F06.23~10.00V	0.01V	10.00V	0	
F06.26	Corresponding setting of Al2 upper limit	-100.0%~100.0%	0.1%	100.0%	0	
F06.27	AI2 input filter time	0.00s~10.00s	0.01s	0.10s	0	

Function code	Name	Detailed instruction of parameters	Min. unit	Default value	Modify	No.
F06.28	HDI lower limit frequency	0.00kHz \sim F06.30	0.01kHz	0.00kHz	0	
F06.29	Corresponding setting of HDI lower limit frequency	-100.0%~100.0%	0.1%	0.0%	0	
F06.30	HDI upper limit frequency	F06.28~50.00kHz	0.01kHz	50.00kHz	0	
F06.31	Corresponding setting of HDI upper limit frequency	-100.0%~100.0%	0.1%	100.0%	0	
F06.32	HDI frequency input filter time	0.00s~10.00s	0.01s	0.10s	0	
F07 Group	o Output terminal	S				
F07.00	HDO output mode	0: pulse output 1: open collector output	1	0	0	
F07.01	HDO open collector output	0: no output 1: running 2: fault output	1	1	0	
F07.02	DO collector output	3: frequency level detection FDT output 4: forward running	1	4	0	
F07.03	Relay T1 output	5: reverse running 6: ready to run 7: frequency arrival	1	5	0	
F07.04	Relay T2 output	8: zero speed running 9: upper limit frequency arrival 10: lower limit frequency arrival 11: overload pre-alarm 12: set count value arrival	1	0	0	

Function code	Name	Detailed instruction of parameters	Min. unit	Default value	Modify	No.
		 13: specified count value arrival 14: simple PLC stage is completed 15: simple PLC cycle is completed 16: running time arrival 17~20: reserved 				
F07.05	AO1 output	0: running frequency 1: ramp reference 2: set frequency	1	0	0	
F07.06	AO2 output	3: rotating speed 4: output current 5: output voltage	1	0	0	
F07.07	HDO open collector high-speed pulse output	6: output power 7: output torque 8: set torque 9: potentiometer 10: AI1 11: AI2 12: pulse frequency HDI	1	0	0	
F07.08	Corresponding setting of AO1 output lower limit	0.0%~100.0%	0.1%	0.0%	0	
F07.09	AO1 output voltage (current) lower limit	0.00V~F07.11	0.01V	0.00V	0	
F07.10	Corresponding setting of AO1 output upper limit	0.0%~100.0%	0.1%	100.0%	0	

Function code	Name	Detailed instruction of parameters	Min. unit	Default value	Modify	No.		
F07.11	AO1 output voltage (current) upper limit	F07.09~10.00V	0.01V	10.00V	0			
F07.12	Corresponding setting of AO2 output lower limit	0.0%~100.0%	0.1%	0.0%	0			
F07.13	AO2 output voltage (current) lower limit	0.00V~F07.15	0.01V	0.00V	0			
F07.14	Corresponding setting of AO2 output upper limit	0.0%~100.0%	0.1%	100.0%	0			
F07.15	AO2 output voltage (current) upper limit	F07.13~10.00V	0.01V	10.00V	0			
F07.16	Corresponding setting of HDO output lower limit	0.00%~100.0%	0.1%	0.00%	0			
F07.17	HDO output lower limit	0.00kHz~F07.19	0.01kHz	0.00kHz	0			
F07.18	Corresponding setting of HDO output upper limit	0.00%~100.0%	0.1%	100.0%	0			
F07.19	HDO output upper limit	F07.17~50.00kHz	0.01kHz	50.00kHz	0			
F08 Group	F08 Group Fault and protection							

Function code	Name	Detailed instruction of parameters	Min. unit	Default value	Modify	No.
F08.00	Motor overload protection	0: No protection 1: ordinary motor (with low speed compensation) 2: variable frequency motor (without low speed compensation)	1	2	☆	
F08.01	Motor overload protection factor	20.0%~120.0%	0.1%	100.0%	0	
F08.02	Motor overload warning point	10.0 \sim 200.0% (relative to the rated current of the inverter)	0.1%	G type 150.0% P type 120.0%	0	
F08.03	Motor overload warning detection time	0.0∼60.0s	0.1s	0.1s	0	
F08.04	Overload warning actuation selection	0: no detection 1: overload warning is valid in running, continue to run 2: overload warning is valid in running, alarm (E.oL3) and stop 3: overload warning is valid in constant speed running, continue to run after detection 4: overload warning is valid in constant speed running, alarm (E.oL3) and stop after detection	1	1	0	
F08.05	Overvoltage stall selection	0: disabled 1: enabled	1	1	0	
F08.06	Overvoltage stall protection voltage	110~150%	1%	135%	0	

Function code	Name	Detailed instruction of parameters	Min. unit	Default value	Modify	No.
F08.07	Overcurrent stall protection	50~200%	1%	G type 160%	0	
F00.07	current	3020078	170	P type 120%		
F08.08	Overcurrent stall frequency decreasing ratio	0.00∼50.00Hz/s	0.01Hz/s	10.0Hz/s	0	
F08.09	Overcurrent stall actuation selection	0: always valid 1: invalid at constant speed	1	0	0	
F08.10	Frequency decreasing point at sudden power loss	70.0 \sim 110.0% (standard bus voltage)	0.1%	80.0%	0	
F08.11	Frequency decreasing ratio at sudden power loss	0.00Hz \sim F00.06 (Max. frequency)	0.01Hz	0.00Hz/s	0	
F08.12	Input phase loss protection	0: disabled 1: enabled	1	1	0	
F08.13	Output phase loss protection	0: disabled 1: enabled	1	1	0	
F08.14	Automatic reset times	0~3	1	0	0	
F08.15	Automatic reset interval	0.1~100.0s	0.1s	1.0s	0	

Function code	Name	Detailed instruction of parameters	Min. unit	Default value	Modify	No.
F08.16	Previous 2 fault type	0: no fault 1: ACC overcurrent (E.oC1) 2: DEC overcurrent (E.oC2) 3: constant speed overcurrent (E.oC3) 4: ACC overvoltage (E.oU1) 5: DEC overvoltage (E.oU2) 6: constant speed	1		•	
F08.17	Previous fault type	overvoltage (E.oU3) 7: bus undervoltage fault (E.Lv) 8: inverter unit U phase protection (E.oUT1) 9: inverter unit V phase protection (E.oUT2) 10: inverter unit W phase protection (E.oUT3)	1		•	
F08.18	Current fault type	 11: motor overload (E.oL1) 12: inverter overload (E.oL2) 13: overload pre-warning fault (E.oL3) 14: radiator 1 overheating (E.oH1) 15: radiator 2 overheating (E.oH2) 16: input side phase loss (E.ILF) 17: output side phase loss (E.OLF) 18: braking unit fault (E.bC) 19: autotuning fault (E.AUT) 20: PID disconnection fault (E.PIDE) 21: communication failure (E.485) 22: external fault (E.EF) 23: EEPROM operation failure (E.EPR) 24: run time arrival (E.ENd) 25: current detection fault 				

Function code	Name	Detailed instruction of parameters	Min. unit	Default value	Modify	No.
F08.19	Frequency at current fault		0.01Hz		•	
F08.20	Current at current fault		0.1A		•	
F08.21	Bus voltage at current fault		0.1V		•	
F08.22	Input terminal status at current fault		1		•	
F08.23	Output terminal status at current fault		1		•	
F09 Group	PID function					
F09.00	channel	0: digital reference (F09.01) 1: Al1 2: Al2 3: HDI 4: multi-step speed 5: 485 communication	1	0	0	
F09.01	PID keypad reference	0.0%~100.0%	0.1%	0.0%	0	
F09.02	PID feedback channel	0: AI1 1: AI2 2: AI1+AI2 3: HDI 4: 485 communication	1	0	0	
F09.03	PID direction	0: positive 1: negative	1	0	0	

Function code	Name	Detailed instruction of parameters	Min. unit	Default value	Modify	No.
F09.04	PID output upper limit (reserved)	-100.0%~100.0%	0.1%	100.0%	0	
F09.05	PID output lower limit (reserved)	-100.0%~100.0%	0.1%	0.0%	0	
F09.06	Proportional gain P	0.00~100.00	0.01	0.10	0	
F09.07	Integral time I	0.01~10.00s	0.01s	0.10s	0	
F09.08	Differential time D	0.00~10.00s	0.01s	0.00s	0	
F09.09	Sampling cycle T	0.00~100.00s	0.01s	0.10s	0	
F09.10	PID control deviation limit	0.0~100.0%	0.1%	0.0%	0	
F09.11	Feedback loss detection value	0.0~100.0%	0.1%	0.0%	0	
F09.12	Feedback loss detection time	0.0∼3000.0s	0.1s	1.0s	0	
F10 Group	o Wobble, step le	ngth and count value				
F10.00	Jump frequency 1	0.00 \sim F00.06 (Max. frequency)	0.01Hz	0.00Hz	0	
F10.01	Jump frequency 2	0.00 \sim F00.06 (Max. frequency)	0.01Hz	0.00Hz	0	
F10.02	Jump frequency amplitude	0.00 \sim F00.06 (Max. frequency)	0.01Hz	0.00Hz	0	
F10.03	Wobble amplitude	$0.0{\sim}100.0\%$ (relative to the set frequency)	0.1%	0.0%	0	

Function code	Name	Detailed instruction of parameters	Min. unit	Default value	Modify	No.
F10.04	Saltation frequency amplitude	$0.0\sim 50.0\%$ (relative to the wobble amplitude)	0.1%	0.0%	0	
F10.05	Wobble rise time	0.0∼3000.0s	0.1s	5.0s	0	
F10.06	Wobble down time	0.0∼3000.0s	0.1s	5.0s	0	
F10.07	Set count value	F10.08~65535	1	0	0	
F10.08	Designated count value	0∼F10.07	1	0	0	
F11 Group	Multi-step speed	d and PLC				
F11.00	Multi-step speed command 0	-100.0~100.0%	0.1%	0.0%	0	
F11.01	Multi-step speed command 1	-100.0~100.0%	0.1%	0.0%	0	
F11.02	Multi-step speed command 2	-100.0~100.0%	0.1%	0.0%	0	
F11.03	Multi-step speed command 3	-100.0~100.0%	0.1%	0.0%	0	
F11.04	Multi-step speed command 4	-100.0~100.0%	0.1%	0.0%	0	
F11.05	Multi-step speed command 5	-100.0~100.0%	0.1%	0.0%	0	

Function code	Name	Detailed instruction of parameters	Min. unit	Default value	Modify	No.
F11.06	Multi-step speed command 6	-100.0~100.0%	0.1%	0.0%	0	
F11.07	Multi-step speed command 7	-100.0~100.0%	0.1%	0.0%	0	
F11.08	Multi-step speed command 8	-100.0~100.0%	0.1%	0.0%	0	
F11.09	Multi-step speed command 9	-100.0~100.0%	0.1%	0.0%	0	
F11.10	Multi-step speed command 10	-100.0~100.0%	0.1%	0.0%	0	
F11.11	Multi-step speed command 11	-100.0~100.0%	0.1%	0.0%	0	
F11.12	Multi-step speed command 12	-100.0~100.0%	0.1%	0.0%	0	
F11.13	Multi-step speed command 13	-100.0~100.0%	0.1%	0.0%	0	
F11.14	Multi-step speed command 14	-100.0~100.0%	0.1%	0.0%	0	
F11.15	Multi-step speed command 15	-100.0~100.0%	0.1%	0.0%	0	

Function code	Name	Detailed instruction of parameters	Min. unit	Default value	Modify	No.
F11.16	PLC work mode	0: stop after a single run 1: run at the final value after a single run 2: circulate to run	1	0	0	
F11.17	PLC power failure memory	0: disabled 1: enabled	1	0	0	
F11.18	PLC restart mode	0: rerun 1: continue running at the interrupted frequency	1	0	\$	
F11.19	ACC/DEC time selection of PLC step 0~7	0~FFFF	0X01	0	0	
F11.20	ACC/DEC time selection of PLC step 8~15	0~FFFF	0X01	0	0	
F11.21	PLC running time unit	0: second 1: minute	1	0	\$	
F11.22	Running time of step 0	0.0∼6553.5s(h)	0.1s(h)	0.0s	0	
F11.23	Running time of step 1	0.0∼6553.5s(h)	0.1s(h)	0.0s	0	
F11.24	Running time of step 2	0.0∼6553.5s(h)	0.1s(h)	0.0s	0	
F11.25	Running time of step 3	0.0∼6553.5s(h)	0.1s(h)	0.0s	0	
F11.26	Running time of step 4	0.0∼6553.5s(h)	0.1s(h)	0.0s	0	
F11.27	Running time of step 5	0.0∼6553.5s(h)	0.1s(h)	0.0s	0	

Function code	Name	Detailed instruction of parameters	Min. unit	Default value	Modify	No.
F11.28	Running time of step 6	0.0∼6553.5s(h)	0.1s(h)	0.0s	0	
F11.29	Running time of step 7	0.0∼6553.5s(h)	0.1s(h)	0.0s	0	
F11.30	Running time of step 8	0.0∼6553.5s(h)	0.1s(h)	0.0s	0	
F11.31	Running time of step 9	0.0∼6553.5s(h)	0.1s(h)	0.0s	0	
F11.32	Running time of step 10	0.0~6553.5s(h) 0.1s(h) 0.0s		0.0s	0	
F11.33	Running time of step 11	0.0∼6553.5s(h)	0.1s(h)	0.0s	0	
F11.34	Running time of step 12	0.0∼6553.5s(h)	0.1s(h)	0.0s	0	
F11.35	Running time of step 13	0.0∼6553.5s(h)	0.1s(h)	0.0s	0	
F11.36	Running time of step 14	0.0∼6553.5s(h)	0.1s(h)	0.0s	0	
F11.37	Running time of step 15	0.0∼6553.5s(h)	0.1s(h)	0.0s	0	
F12 Group	0 485 communica	ition				
F12.00	Local address	0 is the broadcast address, $1{\sim}247$ are slave addresses	1	1	0	
F12.01	Baud rate	0: 1200bps 1: 2400bps 2: 4800bps 3: 9600bps 4: 19200bps 5: 38400bps	1	4	0	

Function code	Name	Detailed instruction of parameters	Min. unit	Default value	Modify	No.
F12.02	Data check	0: no check (N, 8,1) for RTU 1: even check (E, 8,1) for RTU 2: odd check (O, 8,1) for RTU 3: no check (N, 8,2) for RTU 4: even check (E, 8,2) for RTU 5: odd check (O, 8,2) for RTU	1	1	0	
F12.03	Response delay	0∼200ms	1ms	5	0	
F12.04	Communication timeout detection time	0.0 (invalid), 0.1 \sim 100.0s	0.1s	0.0s	0	
F12.05	Communication timeout error handling	0: alarm and coast to stop 1: no alarm and continue running 2: no alarm and stop according to stop mode (communication mode is valid) 3: no alarm and stop according to stop mode (all control modes are valid)		1	0	
F12.06	Communication processing actuation selection	LED ones 0: write with response 1: write without response LED tens 0: set value unsaved after power off 1: set value saved after power off	0x01	0x00	0	
F13 Group	Auxiliary functio	ns				
F13.00	Jogging frequency	0.00 \sim F00.06 (Max. frequency)	0.01Hz	5.00Hz	0	
F13.01	Jogging running ACC time	0.1~3000.0s	0.1s	20.0S	0	

Function code	Name	Detailed instruction of parameters	Min. unit	Default value	Modify	No.
F13.02	Jogging running DEC time	0.1~3000.0s	0.1s	20.0S	0	
F13.03	ACC time 1	0.1~3000.0s	0.1s	20.0S	0	
F13.04	DEC time 1	0.1~3000.0s	0.1s	20.0S	0	
F13.05	ACC time 2	0.1~3000.0s	0.1s	20.0S	0	
F13.06	DEC time 2	0.1~3000.0s	0.1s	20.0S	0	
F13.07	ACC time 3	0.1~3000.0s	0.1s	20.0S	0	
F13.08	DEC time 3	0.1~3000.0s	0.1s	20.0S	0	
F13.09	Emergency stop DEC time (reserved)	0.1∼3000.0s	0.1s	1.0s	0	
F13.10	FDT level detection value	0.00 \sim F00.06 (Max. frequency)	0.01Hz	50.00Hz	0	
F13.11	FDT lag detection	$0.0{\sim}100.0\%$ (FDT level)	0.1%	5.0%	0	
F13.12	Frequency arrival detection amplitude	0.0 \sim 100.0% (Max. frequency)	0.1%	0.0%	0	
F13.13	Droop control	0.00~10.00Hz	0.01Hz	0.00Hz	0	
F40.44	Braking	115.0 \sim 140.0% (standard bus voltage) (380V)	0.1%	130.0%		
F13.14	threshold voltage	115.0 \sim 140.0% (standard bus voltage) (220V)	0.1%	120.0%	0	
F13.15	Overmodulation function	0: invalid 1: valid	1	0	0	
F13.16	Running mode of cooling fan	0: normal running mode 1: keep running after power on	1	0	0	

Function code	Name	Detailed instruction of parameters	Min. unit	Default value	Modify	No.
F13.17	Set running time	$0{\sim}65535$ h	1h	65535h	0	
F14 Group	Reserved functi	ons				
F14.00~ F14.09	Reserved				•	
F15 Group Factory parameters						
F15.00	Factory password	0~65535	1	****	0	

6 Detailed instructions of function parameters

6.1 Basic function (F00 group)

F00.00	Motor control mode	Setting range: 0 \sim 2	Default value: 0
--------	--------------------	---------------------------	------------------

0: V/F control

It is suitable in cases with low speed control precision and where one inverter drives multi-motors, such as fans and water pumps.

1: speed sensorless vector control

It is suitable in cases with general speed control precision, low-frequency large-torque and where one inverter drives several same motors, such as machine tools, centrifuges, electric locomotives, injection molding machines, hoisters etc.

2: torque control

It is suitable in cases with high speed control precision, fast dynamic response and torque control, such as drawing machines, printing and dyeing machinery etc.

F00.01	Run command channel	Setting range: 0 \sim 2	Default value: 0
--------	---------------------	---------------------------	------------------

Select the control command channel for the inverter.

The control commands include: start, stop, forward running, reverse running, jogging etc.

0: keypad run command channel (LED off)

Press the RUN, STOP/RESET or MF keys on the keypad to control the inverter run, stop, forward running, reverse running or jogging.

1: terminal running command channel (LED flickering)

Define the multi-function input terminals DI1 \sim DI7 or HDI to forward running, reverse running and jogging for inverter operation control. Refer to F06.01 \sim F06.08.

2: 485 run command channel (LED on)

The start and stop of the inverter is controlled by the upper computer through Modbus.

Detailed instructions of function parameters

F00.02	Main frequency source X	Setting range: 0 \sim 8	Default value: 0
--------	-------------------------	---------------------------	------------------

0: keypad digit

The frequency of the inverter is set by F00.09.

1: keypad potentiometer AI0

The frequency of the inverter is set by the keypad potentiometer.

- 2: analog input AI1
- 3: analog input Al2

The frequency of the inverter is set by analog input terminals. 2 analog input terminals Al1 and Al2, where Al1 supports 0 \sim 10V or 4 \sim 20mA input, select current or voltage by X2 jumper of the control board, Al2 supports -10V \sim 10V voltage input. For selection modes, refer to the instructions of control board terminals.

4: HDI pulse input

The frequency is set by the terminal HDI pulse frequency.

Pulse reference signal specifications: voltage range 9V \sim 30V, frequency range 0.00K \sim 50.00kHz

5: process PID output

In this case, you need to set the PID functions of F09 group. The set frequency of the inverter is the frequency after PID operation. For PID source, reference quantity and feedback source, refer to the PID functions of F09 group.

6: multi-step speed

The frequency of the inverter is set by the multi-step setting F11.00 to F11.15 determined by the multi-step speed command terminals $1\sim$ 4.

7: simple PLC

When the frequency source is a simple PLC, you need to set the function parameters of F11 group to determine the frequency.

8: 485 communication

The frequency source is set by the upper computer through 485 communication mode.

F00.03 Auxiliary frequency source	Setting range: 0 \sim 6	Default value: 0
-----------------------------------	---------------------------	------------------

0: keypad potentiometer AI0

1: analog input AI1

- 2: analog input Al2
- 3: HDI pulse input
- 4: Process PID output
- 5: multi-step speed
- 6: 485 communication

The Y frequency source has the same meaning as the X frequency source.

F00.04	Reference object of Y frequency source	Setting range: 0 \sim 1	Default value: 0
--------	---	---------------------------	------------------

0: relative to the max. frequency

1: relative to frequency source X

Y frequency needs to combine F00.03 and F00.04 for calculation.

When the Y frequency reference is the maximum output frequency (F00.06), it is calculated in the same way as the X frequency.

When the reference frequency is X frequency, then calculate the X frequency at first. Then take X frequency as a reference to calculate the Y frequency. For example, when the Y frequency is set by the analog input Al1 and the analog input Al1 corresponds to 50.0%, the X frequency is 100.00Hz and finally the Y frequency is 50.0% * 100.00Hz = 50.00Hz. X frequency calculation refers to F00.02.

F00.05Frequency combination reference operationSetting range: 0~ 3Default value: 0	F00.05		Setting range: 0 \sim 3	Default value: 0
--	--------	--	---------------------------	------------------

0: X

1: Y

2: X+Y

3: Max (X, Y)

The combination of the set frequency mode can combine the terminal frequency sources to switch the set frequency channels flexibly, such as switching between X frequency source and Y frequency source, switching between X frequency source and X+Y frequency source. The set frequency is invalid for torque control and is only valid for speed control.

F00.06 Max. frequency	Setting range: F00.08~ 600.00Hz	Default value: 50.00Hz
-----------------------	------------------------------------	---------------------------

The ACC/DEC time is calculated with the maximum frequency as a reference.

F00.07 Upper limit Setting range: F00.09 \sim Default value:
--

CT100 inverter Detailed instructions of function parameters

	frequency	F00.07	50.00Hz
F00.08	Lower limit frequency	Setting range: 0.00Hz \sim F00.08	Default value: 0.00Hz

The upper and lower limit frequency is the running maximum and minimum frequency of the motor according to the requirements of production process.

F00.09	Keypad frequency	Setting range: 0.00Hz \sim	Default value:
F00.09	setting	F00.07	50.00Hz

When the X frequency reference (F00.02) is selected as a digital reference, the function code value sets the initial value for the frequency setting of the inverter.

F00.10Run directionSetting range: 0~2	Default value: 0
---------------------------------------	------------------

0: positive

After power on, the inverter runs in the actual direction.

1: reverse

Be used to change the running direction of the motor.

In some cases, the motor runs reversely. It is complicated to change the wiring of the motor. The function code can bring debugging convenience.

2: prohibit reverse

For some devices, reverse running may cause damage to the equipment, this function can be used to prohibit reverse running.

For example, when the run direction selection (F00.10) selects reverse and the reverse running of the terminal command channel is valid, the motor actually rotates forward.

This function adjusts the carrier frequency of the inverter. Adjusting the carrier frequency can reduce the motor noise, avoid the resonance point of the mechanical system, and reduce the line-to-ground leakage current and the interference caused by the inverter.

When the carrier frequency is low, the high output current harmonic component, motor loss and temperature increase.

When the carrier frequency is high, the motor loss and the motor temperature decrease, but the inverter loss, temperature and interference increase.

Adjusting the carrier frequency will have an impact on the following performance:

CT100 inverter Detailed instructions of function parameters

Carrier frequency	$low \to high$
Motor noise	large \rightarrow small
Motor temperature rise	high \rightarrow low
Inverter temperature rise	$low \to high$
Output current waveform	$bad \to good$
Leakage current	small \rightarrow large
External radiation interference	small \rightarrow large
T 0 0 1 1 1 1 1 1 1	

Table 6-1 Carrier frequency adjustment impact on performance

F00.12	PWM optimization	Setting range: 0~2	Default value: 0
--------	------------------	--------------------	---------------------

0: PWM optimization 1

SVPWM two-phase modulation, the motor runs at low frequency with small noise, high frequency with large noise.

1: PWM optimization 2

SVPWM two-phase modulation combined with three-phase modulation, the motor runs with small noise, but the inverter temperature rise is higher, derating is necessary.

2: PWM optimization 3

SVPWM three-phase modulation, the motor runs with large noise, but the motor oscillation is suppressed.

F00.13	AVR function	Setting range: 0 \sim 1	Default
F00.13		Setting range. 0 - 1	value: 1

^{0:} invalid

The duty cycle of the output voltage does not change.

1: valid

The output voltage duty cycle is automatically adjusted as the bus changes to ensure that the output voltage is constant.

F00.1	ACC time 0	Setting range: 0.1~3000.0s	Default value: 20.0s
F00.1	5 DEC time 0	Setting range: 0.1~3000.0s	Default value: 20.0s

ACC time 0: the time it takes for the inverter output frequency increasing from zero frequency to the maximum frequency (F00.06).

DEC time 0: the time it takes for the inverter output frequency decreasing from the maximum frequency to the zero frequency (F00.06).

Detailed instructions of function parameters

A total of 4 groups of ACC/DEC time selection:

Group 0: F00.14, F00.15

Group 1: F13.03, F13.04

Group 2: F13.05, F13.06

Group 3: F13.07, F13.08

The ACC/DEC time can be selected by the multi-function digital input terminal (F06.01 \sim F06.08). Select the 4 groups of ACC/DEC time through the combination of the two terminals.

ACC/DEC time selection 2	ACC/DEC time selection 1	ACC/DEC time selection	Corresponding parameters
OFF	OFF	ACC/DEC time 0	F00.14/F00.15
OFF	ON	ACC/DEC time 1	F13.03/F13.04
ON	OFF	ACC/DEC time 2	F13.05/F13.06
ON	ON	ACC/DEC time 3	F13.07/F13.08

6.2 Motor parameters (F01 group)

F01.00	Inverter type	Setting range: 0~1	Default value: Depend on model
--------	---------------	--------------------	--------------------------------------

0: G type

1: P type

When the inverter is set to be P type, the inverter is amplified for use. But the overload capacity is weakened, it can only be used for light load occasions such as fans and water pumps, this time the inverter will be under light overload protection. When the inverter is set to be G type, the inverter must match the motor and the inverter will be under heavy overload protection.

Note: If you want to modify the parameter, the motor power and other parameters should also be manually modified as needed.

F01.01	Motor type	Setting range: $0 \sim 1$	Default	
101.01	wotor type	Setting range. 0 1	value: 0	

0: asynchronous motor

1: reserved

The current inverter only supports asynchronous motors.

F01.02 Rated power of Setting range: 0.4 \sim Default value:
--

Detailed instructions of function parameters

	asynchronous motor	3000.0kW	Depend on model
F01.03	Rated frequency of asynchronous motor	Setting range: 10.00Hz \sim F00.06	Default value: 50.00Hz
F01.04	Rated speed of asynchronous motor	Setting range: 1 \sim 36000rpm	Default value: Depend on model
F01.05	Rated voltage of asynchronous motor	Setting range: 0 \sim 500V	Default value: Depend on model
F01.06	Rated current of asynchronous motor	Setting range: 0.8 \sim 3000.0A	Default value: Depend on model

Set these parameters correctly according to the motor name plate.

F01.07	Stator resistance of asynchronous motor	Setting range: 0.001 \sim 65.535 Ω	Default value: Depend on model
F01.08	Rotor resistance of asynchronous motor	Setting range: 0.001 \sim 65.535 Ω	Default value: Depend on model
F01.09	Inductance of asynchronous motor	Setting range: 0.1 \sim 6553.5mH	Default value: Depend on model
F01.10	Mutual inductance of asynchronous motor	Setting range: 0.1 \sim 6553.5mH	Default value: Depend on model
F01.11	Non-load current of asynchronous motor	Setting range: 0.1 \sim 6553.5A	Default value: Depend on model

These parameters can be obtained by motor parameter autotuning. The correctness of these parameters has a direct effect on the control performance of the motor.

F01.12 Motor parameters autotuning	Setting range: 0~2	Default value: 0
------------------------------------	--------------------	------------------

0: no actuation

1: dynamic autotuning

In order to ensure the dynamic control performance of the inverter, select the

CT100 inverter Detailed instructions of function parameters

dynamic autotuning. The dynamic autotuning needs to decouple the motor and load (no load).

Select the dynamic autotuning, after completing the stator and rotor resistance identification, the motor will accelerate to 2/3 of the rated motor frequency in accordance with F00.14, maintain for a period of time, decelerate to zero speed in accordance with F00.15 and complete motor parameter dynamic autotuning.

2: static autotuning

It is suitable in cases where the load is difficult to decouple from the motor such as starters and elevators. Select the static autotuning, the motor will not rotate.

F00.01= 1, when F01.12 is set to 1 or 2, press the "ENT" key, the keypad displays "-RUN-", the state LED flickers and then press the RUN key to confirm parameter autotuning. When the parameter autotuning is completed, the keypad displays the stop state. In the parameter autotuning process, you can press the "STOP" key to terminate the parameter autotuning. F01.12 will automatically clear after completing parameter autotuning.

Note: Make sure the parameters of the motor name plate (F01.02 \sim F01.06) are set correctly before motor autotuning.

6.3 Start and stop control (F02 group)

F02.00	Start mode	Setting range: $0{\sim}2$	Default value: 0
--------	------------	---------------------------	------------------

0: start from the starting frequency

Start from the starting frequency (F02.02), after the hold time of starting frequency (F02.03), accelerate to the set frequency.

1: start after DC braking

The inverter carries out DC braking to the motor. The braking process is determined by F02.04 and F02.05. After the DC braking time arrival, the motor restarts according to the starting frequency.

2: start after rotating speed tracking

The inverter carries out speed identification to the rotating motor and starts at the rotating speed. In the starting process, the current and the voltage are smooth without impact.

F02.01	Start delay time	Setting range: 0.0 \sim 80.00s	Default value:
102.01	(reserved)		0.0s

When the run command is valid, the inverter will start running after delay time according to F02.01.

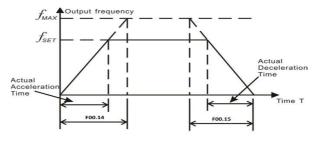
Detailed instructions of function parameters

F02.02	Starting frequency	Setting range: 0.00 \sim 20.00Hz	Default value: 1.50Hz
F02.03	Hold time of starting frequency	Setting range: 0.0 \sim 60.0s	Default value: 0.0s

To ensure the torque at start-up, set the appropriate starting frequency. In addition, set up magnetic flux to wait for the start of the motor, so that the starting frequency maintains a certain time before acceleration. The starting frequency F02.02 is not limited by the lower limit frequency. When the frequency reference is less than the starting frequency, the inverter cannot start and keep in standby state. When switching forward running and reverse running, the hold time of starting frequency does not work.

F02.04	DC braking current before start	re Setting range: 0.0~160.0%	Default 0.0%	value:
F02.05	DC braking time before start	Setting range: 0.0 \sim 60.0s	Default 0.0s	value:

DC braking current before start refers to motor rated current (F01.06).


DC braking time before start sets the operating time of the braking current.

The braking current before starting will affect the magnetic field strength of the fixed motor shaft. Increase the braking current value and then the heat generated by the motor in deceleration increases. Set the minimum DC braking current required for the fixed motor shaft.

0: linear type

The output frequency (speed) rises or falls evenly, that is constant ACC/DEC mode. The ACC/DEC event varies according to the set ACC/DEC time.

The output frequency increases or decreases progressively at a constant slope as shown in the following figure:

Detailed instructions of function parameters

Figure 6-1 Constant ACC/DEC curve

1: S curve (reserved)

F02.07	Terminal characteristic selection after power on	Setting range: 0 \sim 1	Default value: 0
	selection alter power on		value. U

When the run command selection (F00.01) is the terminal control, the system will automatically detect the status of the running terminal after power on.

0: run command is invalid

After power on, the inverter remains in stop state and it will not receive the terminal run command. If you need to run the inverter, all the terminal run commands should be cleared and then enable the terminal run command.

1: run command is valid

After power on, the inverter receives the terminal run command immediately.

F02.08	Restart after power off	Setting range: 0~1	Default value: 0
--------	-------------------------	--------------------	---------------------

0: no actuation

1: actuation

The inverter can run automatically when power on again after power off. Please use this function with caution.

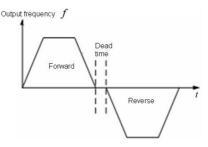
F02.09	Power off restart waiting time	Setting range: 0.0 \sim 3000.0s	Default value: 0.0s
--------	--------------------------------	-----------------------------------	------------------------

If the inverter is running before power off, it will run automatically after power off restart waiting time (F02.09) after power failure.

F02.10	Stop mode	Setting range: 0 \sim 1	Default value: 0
--------	-----------	---------------------------	---------------------

0: decelerate to stop

Decelerate to stop according to the set DEC time.


1: coast to stop

The inverter immediately blocks the pulse output and the load coasts to stop in accordance with the mechanical inertia.

F02.11	Dead time of	Setting range: 0.0 \sim 2000.0s	Default	
102.11	FWD/REV	Setting range. 0.0 *2000.03	value: 0.0s	

When the inverter transforms between forward running and reverse running, the running frequency will drop to the starting frequency (F02.02) at first and then maintain the dead time of FWD/REV (F02.11). After the time, the inverter

switches to the opposite direction.

Figure 6-2 Forward and reverse dead time

F02.12	Starting frequency before stop DC braking	Setting range: 0.00 \sim F00.06	Default value: 0.00Hz
F02.13	Waiting time before stop DC braking	Setting range: 0.0~60.0s	Default value: 0.0s
F02.14	Stop DC braking current	Setting range: 0.0 \sim 160.0%	Default value: 0.0%
F02.15	Stop DC braking time	Setting range: 0.0 \sim 60.0s	Default value: 0.0s

Starting frequency of stop braking: During deceleration, start the DC braking when running frequency reaches the starting frequency. If the value of stop braking starting frequency is 0 or lower than starting frequency (P1.02), DC braking is invalid; the variable frequency speed control system will coast to stop when running frequency reaches starting frequency.

Waiting time before DC braking: The system will block output before reaching starting frequency of stop braking during DEC and the DC braking will start after the waiting time, which prevents over-current fault caused by DC braking at high speed.

Stop DC braking current: The added DC braking current. The bigger the DC braking current, the larger the braking torque.

F02.16	Frequency for deceleration to stop (reserved)	Setting range: F00.08 \sim 50.00Hz	Default value: 0.00Hz
F02.17	Delay time of stop	Setting range: 0.0 \sim 100.0s	Default value: 0.0s

Stop DC braking time: The time for DC braking

CT100 inverter Detailed instructions of function parameters

frequency (reserved)

When the inverter decelerates to stop and the frequency is reduced to the frequency for deceleration to stop (F02.16), the inverter will block the pulse output after delay time of stop frequency(F02.17).

F02.18 Actuation when run frequency is less th lower limit frequen	I frequency	: Default value: 0
--	-------------	--------------------------

- 0: Run at lower frequency limit
- 1: stop
- 2: sleep standby

Select the operating status of the inverter when the set frequency is below the lower limit frequency. To avoid long-term low-speed motor running, you can use this function to choose to stop.

Note: The lower limit frequency larger than 0 is valid.

During dormancy, after delay time of dormancy wake up, the inverter will enter into the running state.

6.4 V/F control (F03 group)

F03.00 V/F curve	Setting range: 0 \sim 2	Default	
F03.00		value: 0	

0: straight line V/F curve. It is applicable for constant torque load.

1: multi-dots V/F curve. It is applicable for special load such as water extractors, centrifuges etc.

2: 2.0^{th} power low torque V/F curve. It is applicable for variable torque load such as fans, water pumps etc.

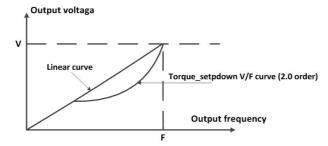


Figure 6-3 V/F curve

F03.01	Torque	Setting range: 0.0 % (automatic)	Default
	compensation	0.1%~10.0% (manual)	value: 1.0%
F03.02	Torque compensation cut-off	Setting range: $0.0\%{\sim}50.0\%$	Default value: 20.0%

F03.01 Torque compensation

Refer to the motor rated voltage (F01.05) to set the voltage compensation at zero frequency.

F03.02 Torque compensation cut-off

Refer to the motor rated frequency (F01.03) to set the torque compensation cut-off frequency.

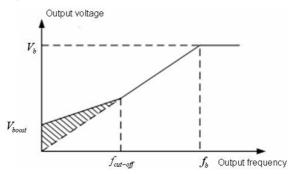


Figure 6-4 Torque compensation plot

Torque compensation can improve the V/F low-frequency torque characteristic. When the inverter is running below the torque compensation cut-off (F03.02*motor rated frequency), by increasing the output voltage, offsetting the

CT100 inverter Detailed instructions of function parameters

stator voltage drop and generate enough torque, ensure the motor runs normally.

The torque compensation amplitude should be set appropriately according to the load conditions, excessive compensation in startup will cause a great current impact.

F03.03	V/F frequency 1	Setting range: 0.00~F03.05	Default value: 0.00Hz
F03.04	V/F voltage 1	Setting range: 0.0% \sim 100.0%	Default value: 0.0%
F03.05	V/F frequency 2	Setting range: F03.03 \sim F03.07	Default value: 0.00Hz
F03.06	V/F voltage 2	Setting range: 0.0% \sim 100.0%	Default value: 0.0%
F03.07	V/F frequency 3	Setting range: F03.05 \sim F01.03	Default value: 0.00Hz
F03.08	V/F voltage 3	Setting range: 0.0% \sim 100.0%	Default value: 0.0%

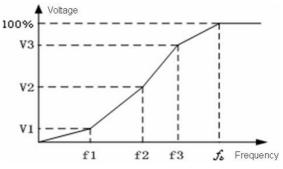


Figure 6-5 Multi-dots V/F curve

F03.09	Slip compensation	Setting range: 0.0	\sim	Default	value:
F03.09	gain	200.0%		0.0%	

The motor's running torque changes with the load torque, which results in the variance of motor speed. The inverter's output frequency can be adjusted automatically through slip compensation according to the load torque. Therefore the change of speed due to the load change can be reduced.

Slip compensation frequency = sign * F03.09 * slip frequency * torque current/motor rated current, electric state symbol is +, power generation status symbol is -.

Detailed instructions of function parameters

F03.10	Frequency threshold of surge suppression	Setting range: 0.00Hz \sim F01.06	Default value: 30.00Hz
F03.11	Low frequency surge suppression factor	Setting range: 0.0~1.0	Default value: 0.2
F03.12	High frequency surge suppression factor	Setting range: 0.0~1.0	Default value: 0.0

For high-power motors, the motor will surge badly at a certain frequency in V/F control. According to the oscillation frequency, F03.11 or F03.12 can be selected to improve the motor running. The larger the parameter, the larger the suppression effect of the motor surge. Whereas the set value is too large, it may aggravate the motor surge.

0: invalid

1: valid

When the motor runs with no-load or light load in V/F control, the output voltage decreases along with the load reduces for automatic energy saving.

6.5 Vector control (F04 group)

F04.00	Low speed proportional gain	Setting range: 0~150	Default value: 25
F04.01	Low speed integral time	Setting range: 0.01~15.00s	Default value: 0.60s
F04.02	Low speed switching frequency	Setting range: 0.00Hz \sim F04.05	Default value: 5.00Hz
F04.03	High speed proportional gain	Setting range: 0~150	Default value: 25
F04.04	High speed integral time	Setting range: 0.01~15.00	Default value: 1.00s

Detailed instructions of function parameters

F04.05 High speed switching frequency	Setting range: F00.06	F04.02 \sim	Default 10.00Hz	value:
---	--------------------------	---------------	--------------------	--------

The speed loop PI adjustment is used to output the torque current so that the deviation of the speed command and the motor speed tends to zero.

F04.00/F04.03 proportional gain: when it increases, responsiveness will increase. Generally, the larger the load, the larger the set value is. Whereas the set value is too large, motor vibration occurs.

F04.01/F04.04 integral time: when it increases, responsiveness will decrease. Whereas the integral time is too short, motor vibration occurs.

F04.02/F04.05 switching frequency: the inverter calculates the current proportional gain and integral time according to the switching frequency.

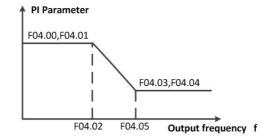


Figure 6-6 PI parameters and running frequency

When the running frequency is less than or equal to the low speed switching frequency (F04.02), the proportional gain is F04.00 and the integral time is F04.01;

When the running frequency is higher than the low speed switching frequency (F04.02) and less than the high speed switching frequency (F04.05), the proportional gain and the integral time are calculated according to the linear relationship;

When the running frequency is equal to or higher than the high speed switching frequency (F04.05), the proportional gain is F04.03 and the integral time is F04.04.

F04.06	VC slip compensation factor	Setting range: 50% \sim 200%	Default value: 100.0%
F04.07	Reserved	Setting range:	Default value:

The VC slip compensation factor is used to adjust the slip frequency of vector control and improve the speed stability of the system. Enlarge the parameter

CT100 inverter Detailed instructions of function parameters

when the motor speed is low at overload, otherwise reduce the parameter, which can suppress the speed static deviation effectively.

F04.08 Sp	Speed loop filter time	Setting	range:	0ms	\sim	Default	value:	
		100ms				0ms		l

In vector control mode, the speed loop regulator outputs torque current command, which is used to filter the torque command. The parameter is generally not adjusted. When speed fluctuation is large, increase the filter time; if the motor oscillates, it is necessary to reduce the parameter.

Speed loop filter time constant is small, the inverter output torque may change greatly, but the response is fast.

F04.09 Upper torque limit	Setting range: 0 200.0%	0.0 ~	Default 150.0%	value:
---------------------------	----------------------------	-------	-------------------	--------

When F04.09 selects the torque upper limit, 100.0% corresponds to the rated current of the inverter.

Note: G type inverter, default value: 150.0%, P type inverter, default value: 120.0%

F04.10 Torque setting Setting range: 0~5 Default value	lue: 0
--	--------

0: keypad (F04.11)

- 1: AI1
- 2: AI2

3: Pulse input HDI

4: Multi-step torque

5: 485 communication (1 \sim 5: 100% corresponds to 2 times of inverter rated current)

When F00.00 is set to 2 torque control, the inverter performs torque control, and it outputs the torque according to the set torque command. At this time, the output frequency automatically matches the speed of the load, but the output upper limit frequency is limited by F04. 12, when the load speed is larger than the set upper limit frequency, the inverter output frequency is limited, the output torque becomes smaller, the output torque will be different from the set torque, when the inverter output frequency to F04.12, the inverter keeps running at the upper limit frequency.

Torque control, when the set torque of the inverter is larger than the load torque, the inverter output frequency will rise, when the inverter output frequency reaches the upper limit, the inverter keeps running at the upper limit frequency; when the set torque of the inverter is less than the load torque, the inverter

CT100 inverter Detailed instructions of function parameters

output frequency will drop, when the inverter output frequency reaches the lower limit frequency, the inverter keep running at the lower limit frequency.

 $(1 \sim 5:$ corresponds to 200% of the inverter rated current).

F04.11 is relative to the rated current of the inverter.

F04.12	Upper limit frequency	Setting range: 0 \sim 5	Default
	setting	Setting range. 0/~5	value: 0

- 0: keypad (F00.07)
- 1: Al1
- 2: AI2
- 3: Pulse input HDI
- 4: multi-step speed
- 5: 485 communication

(1 \sim 5: 100% corresponds to the Max. frequency)

F04.13	Min. excitation current	Setting range: 0.0 \sim 50.0%	Default
	(reserved)	Setting range: 0.0~50.0%	value: 10.0%

When the motor speed is running above the rated speed, in order to maintain the output voltage stable, reduce the excitation current, the motor will enter the field weakening operation. When the motor is weakened, the minimum excitation current is 100.0% corresponding to F01.11 (motor no load current).

6.6 HMI interface (F05 group)

F05.00 Chinese and English language	Setting range: 0~1	Default value: 0
--	--------------------	---------------------

0: Chinese

1: English (reserved)

F05.01	Parameter initialization	Setting range: 0 \sim 2	Default value: 0	
--------	--------------------------	---------------------------	---------------------	--

- 0: no actuation
- 1: restore default value.
- 2: clear the fault record.

Detailed instructions of function parameters

F05.02	Parameter copy	Setting range: $0 \sim 1$	Default value: 0
0: reserve	ed		

1: reserved

F05.03	User password	Setting range: 0 \sim 65535	Default
1 05.05		Setting range. 0 *00000	value: 0

Protect the parameters of the inverter.

0000: no password protection.

 $1\sim 65535:$ optional password. If you need to query and modify the inverter parameters, you must enter a matching password, only after the password verification, you can carry out the follow-up operation.

F05.04 Functions of MF key Setting range: 0~4	Default value: 0
---	---------------------

0: left-shift key to switch display state

Combine with the ">>" key to switch the running or stop status monitoring parameters.

1: jogging running

The key MF sends the jog run command.

2: FWD/REV switch

The key MF sends a command to switch the direction of the frequency command, only valid for keypad control.

3: clear UP/DOWN setting

Clear the UP/DOWN setting.

4: non-factory parameter debugging

In this mode, you can only view the parameters that are not the same as the default values, so that you can quickly check the settings of the inverter.

- 0: only valid for keypad control
- 1: valid for keypad and terminal control at the same time
- 2: valid for keypad and communication control at the same time
- 3: valid for all control modes

CT100 inverter Detailed instructions of function parameters

F05.06	Rotating speed display correction	Setting 999.9%	range:	0.1	\sim	Default value: 100.0
	0011000011	333.370				Value. 100.0

It is used to correct the rotating speed display. After changing the rotating speed display correction, the displayed rotating speed = 60*running frequency * F05.06/(motor pole number*100.0)

F05.07	Linear speed display correction	Setting range: 0.1~999.9%	Default value: 1.0
--------	---------------------------------	---------------------------	-----------------------

It is used to correct the linear speed display. After changing the linear speed display correction, the displayed linear speed = mechanical rotating speed * F05.07

F05.08	Displayed parameters 1 when running	Setting range: 0xFFFF	Default value: 0X07FF
	when running	UXFFFF	

BIT0: running frequency (Hz on)

BIT1: set frequency (Hz flickers)

BIT2: bus voltage (V on)

BIT3: output current (A on)

BIT4: output voltage (V on)

BIT5: rotating speed (rpm on)

BIT6: linear speed

BIT7: output power (% on)

BIT8: output torque (% on)

BIT9: input terminal status

BIT10: output terminal status

BIT11: PID reference (% on)

BIT12: PID feedback (% on)

BIT13: Pulse HDI frequency

BIT14: Count value

BIT15: PLC and current stage of multi-step speed

You need to correspond the displayed parameters to the BIT1, and then transform BIT0 \sim BIT15 into hexadecimal input F05.08. For example, in the running state, if you need to monitor the running frequency, output power and count value without other parameters displayed, transform the binary 0100000010000001 into hexadecimal 0x4081, set F05.08 to 4081.

Detailed instructions of function parameters

BIT0: torque setting (% on)

BIT1: keypad potentiometer AI0 (V on)

BIT2: analog input AI1 (V on)

BIT3: analog input AI2 (V on)

BIT4: motor overload percentage (% on)

BIT5: inverter overload percentage (% on)

BIT6~15: reserved

This parameter is used the same as F05.08. F05.08 is lower 16 bits and F05.09 is high 16 bits; when F05.08 movement judgment display is completed, F05.09 works, after F05.09 displays, automatically switch to bit0 of F05. 08.

	······································						
F05.10	Displayed parameters 1 at stop	Setting 0xFFFF	range:	0 ~	Default 0X00FF	value:	
BIT0: set	t frequency (Hz flickers)						
BIT1: bu	s voltage (V on)						
BIT2: inp	out terminal status						
BIT3: ou	tput terminal status						
BIT4: ke	ypad potentiometer AI0 (V o	n)					
BIT5: an	alog input AI1 (V on)						
BIT6: an	alog input AI2 (V on)						
BIT7: Pu	lse HDI frequency (Hz on)						
BIT8: PII	D reference (% on)						
BIT9: PII	BIT9: PID feedback (% on)						
BIT10: P	BIT10: PLC and current stage of multi-step speed						
BIT11: to	orque setting (% on)						
BIT12~I	BIT15: reserved						

This parameter is used the same as F05.08.

F05.11	Inverter rated power	Setting range: 3000.0kW	0.4 ~	Displays the rated power of the drive
F05.12	Inverter rated	Setting range:	0.0 ~	Displays the drive rated

CT100 inverter Detailed instructions of function parameters

	current	3000.0A	current
F05.13	Converting module temperature	Setting range: -20.0 \sim 100.0 $^\circ\!{\rm C}$	Displays the inverter module temperature
F05.14	Rectification bridge temperature	Setting range: -20.0 \sim 100.0 $^\circ\!{ m C}$	Displays the rectifier module temperature
F05.15	Software version	Setting range: 0.00 \sim 655.35	Display control software version number
F05.16	Accumulative running time	Setting range: 0 \sim 65535h	Displays the machine's running time

6.7 Input terminals (F06 group)

F06.00	HDI input mode	Setting range: 0 \sim 1	Default value: 0
--------	----------------	---------------------------	------------------

0: pulse input

HDI is configured for high-speed pulse capture ports

1: switch input

HDI as a normal DI port to configure

F06.01	Functions of DI1 terminal	Setting range: 0 \sim 39	Default value: 1
F06.02	Functions of DI2 terminal	Setting range: 0 \sim 39	Default value: 4
F06.03	Functions of DI3 terminal	Setting range: 0 \sim 39	Default value: 7
F06.04	Functions of DI4 terminal	Setting range: 0 \sim 39	Default value: 0
F06.05	Functions of DI5 terminal	Setting range: 0 \sim 39	Default value: 0
F06.06	Functions of DI6 terminal	Setting range: 0 \sim 39	Default value: 0
F06.07	Functions of DI7 terminal	Setting range: 0 \sim 39	Default value: 0

CT100 inverter Detailed instructions of function parameters

F06.08	Functions of HDI terminal switch input	Setting range: 0 \sim 39	Default value: 0
--------	---	----------------------------	---------------------

These parameters are used to set the function of the digital multi-function input terminal. The functions that can be selected are shown in the following table:

Set the value	Features	Description	
0	Invalid	Please set unused terminals to be invalid to avoid malfunction.	
1	Forward running	Control the inverter operation through external	
2	Reverse running	terminals.	
3	Forward jogging	Please refer to description of F13.00 \sim F13.02.	
4	Reverse jogging		
5	Three-wire running	Please refer to description of F06.10.	
6	Coast to stop	The inverter blocks the output immediately. The motor coasts to stop by its mechanical inertia.	
7	Fault reset	Resets faults that have occurred. It has the same function as STOP/RST.	
8	Emergency stop	Reserved	
9	External fault input	Stop the inverter and output a alarm when a fault occurs in a peripheral device.	
10	Run pause	When this terminal takes effect, inverter decelerates to stop and save current status, such as PLC, traverse frequency and PID. When this terminal takes no effect, inverter restores the status before pause.	
11	Terminal UP	When the frequency is set by external terminals, increase or decrease the reference frequency	
12	Terminal DOWN	progressively; when the frequency is set to digit setting, the setting frequency can be adjusted u and down; F06.11 can adjust the change rate o UP/DOWN.	
13	UP/DOWN setting clear	When the terminal is valid, it can clear the UP/DOWN setting and restore the frequency to the original set frequency.	
14	UP/DOWN setting cleared temporarily	When the terminal switches on, clear the UP/DOWN setting, restore the frequency to the frequency given by the frequency command channel; when the terminal switches off, return to the UP/DOWN setting.	

Detailed instructions of function parameters

Set the value	Features	Description				
15	Multi-step speed pause	Shield the function of multi-speed terminals and keep the set value as the current status.				
16	Multi-step speed terminal 1	16 steps speed control can be realized by the combination of these four terminals.				
17	Multi-step speed terminal 2	Note: Multi-step speed 1 is the low bit and multi-step speed 4 is high bit.				
18	Multi-step speed terminal 3	speed 4	Multi-stepMulti-stepMulti-stepspeed 4speed 3speed 2speed 1			
19	Multi-step speed terminal 4	BIT3	BIT2	BIT1	BIT0	
20	Simple PLC stop reset	Restart sir PLC.	mple PLC	and clear the	memory state of	
21	Simple PLC pause	Program pause during PLC implement. Run at the current speed step. After cancel the function, simple PLC continues to run.				
22	X setting and Y setting switching	The function can realize the switching between the frequency setting channels.				
23	(X+Y) setting and X setting switching					
24	(X+Y) setting and Y setting switching					
25	ACC/DEC time	Select for combination	ur group on of the t	s of ACC/DE wo terminals:	C time by the	
	selection 1	Terminal 2	Terminal 1	ACC/DEC time selection	Corresponding parameter	
		OFF	OFF	ACC/DEC time 0	F00.14/F00.15	
26	ACC/DEC time	OFF	ON	ACC/DEC time 1	F13.03/F13.04	
	selection 2	ON	OFF	ACC/DEC time 2	F13.05/F13.06	
		ON	ON	ACC/DEC time 3	F13.07/F13.08	
27	ACC/DEC disabled	Ensure that the inverter is not affected by external signals (except for the stop command) and maintain the current output frequency.				

Detailed instructions of function parameters

Set the value	Features	Description
28	Torque control disabled	Switch form torque control mode to speed control mode.
29	Counter triggered	Enable the pulse counter.
30	PID control pause	Temporary PID invalid and the inverter will output at the current frequency.
31	Wobble pause (at the current frequency)	The inverter will stop at the current output and after canceling the function, the inverter will continue wobble at the current frequency.
32	Wobble reset (return to center frequency)	The setting frequency of the inverter will come back to the center frequency.
33	Counter reset	The counter status is cleared.
34~39	Reserved	Reserved

Table 6-2 Functions of multi-function input terminals

		•	
F06.09	DI terminal filter time	Setting range: 1~15	Default value: 0

Set the sensitivity of the DI terminal. If the digital input terminal is easy to be interfered and cause malfunction, this parameter can be increased to improve the anti-interference capability, whereas at the same time the sensitivity of the DI terminal will be reduced.

F06.10	Terminal control running mode	Setting range: 1~3	Default value: 0
--------	----------------------------------	--------------------	---------------------

Set the terminal control running mode.

0: two-wire control mode 1

Enabling and direction are combined together. This is the most frequently used two-wire mode. Whether the motor is forward or reverse running is determined by FWD and REV terminal commands.

Figure 6-7 Two-wire control

1: two-wire control mode 2

Enabling is separated from direction. START/STOP command is determined by FWD terminal. Direction is determined by REV terminal.

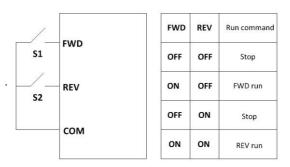
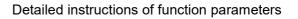
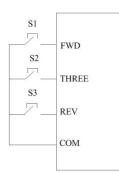




Figure 6-8 two-wire control 2

2: three-wire control mode 1

This mode defines the three-wire running terminal (THREE) as the enabling terminal. The running command will be generated by FWD and the direction will be controlled by REV. When THREE switches off, the system will stop.

THREE	REV	Previous running direction	Current running direction
ON	OFF→ ON	FWD run	REV run
UN	OFF- ON	REV run	FWD run
ON	ON→ OFF	FWD run	REV run
OIN		REV run	FWD run
ON→ OFF			Decelerate to stop

Figure 6-9 three-wire control 1

3: three-wire control mode 2

This mode defines the three-wire running terminal (THREE) as the enabling terminal. The running command will be generated by FWD and REV, and both control the running direction at the same time. When THREE switches off, the system will stop.

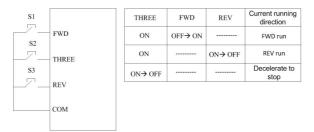


Figure 6-10 three-wire control 2

F06.11 Adjust step length of terminal UP/DOWN frequency	Setting range: 0.0150.00Hz/s	Default value: 0.50H/s
---	---------------------------------	---------------------------

Use the terminal UP/DOWN to adjust the set frequency, frequency change speed, that is, the amount of frequency change per second.

F06.12 Adjust control of keypad and terminal UP/DOWN frequency	Setting range: 0~3	Default value: 0
--	--------------------	---------------------

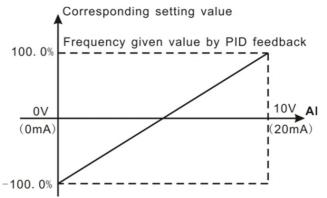
0: valid, hold on after power off; when the inverter stops, UP/DOWN settings are saved; after power on again, UP/DOWN settings and the current frequency are

overlaid.

- 1: valid, clear after power off
- 2: invalid
- 3: valid in running, clear after power off

F06.13	Keypad potentiometer Al0 lower limit	Setting range: 0.00 \sim 10.00V	Default value: 0.00V
F06.14	Corresponding setting of keypad potentiometer Al0 lower limit	Setting range: -100.0 \sim 100.0%	Default value: 0.0%
F06.15	Keypad potentiometer Al0 upper limit	Setting range: 0.00 \sim 10.00V	Default value: 10.00V
F06.16	Corresponding setting of keypad potentiometer Al0 upper limit	Setting range: -100.0 \sim 100.0%	Default value: 100.0%
F06.17	Keypad potentiometer Al0 filter time	Setting range: 0.00 \sim 10.00s	Default value: 0.10s
F06.18	AI1 lower limit	Setting range: 0.00 \sim 10.00V	Default value: 0.00V
F06.19	Corresponding setting of AI1 lower limit	Setting range: -100.0 \sim 100.0%	Default value: 0.0%
F06.20	AI1 upper limit	Setting range: 0.00 \sim 10.00V	Default value: 10.00V
F06.21	Corresponding setting of AI1 upper limit	Setting range: -100.0 \sim 100.0%	Default value: 100.0%
F06.22	AI1 input filter time	Setting range: 0.00 \sim 10.00s	Default value: 0.10s
F06.23	AI2 lower limit	Setting range: -10.00 \sim 10.00V	Default value: 0.00V
F06.24	Corresponding setting of AI2 lower limit	Setting range: -100.0 \sim 100.0%	Default value: 0.0%

Detailed instructions of function parameters


F06.25	Al2 upper limit	Setting range: -10.00 \sim 10.00V	Default 10.00V	value:
F06.26	Corresponding setting of AI2 upper limit	Setting range: -100.0 \sim 100.0%	Default 100.0%	value:
F06.27	Al2 input filter time	Setting range: 0.00 \sim 10.00s	Default 0.10s	value:

The parameters determine the relationship between input voltage and the corresponding setting value. When the analog input voltage exceeds the range between lower limit and upper limit, it will be regarded as the upper limit or lower limit.

Input filter time: the larger the value, the stronger the anti-interference capability and the lower the sensitivity; the smaller the value, the higher the analog input sensitivity and the weaker the anti-interference capability.

Analog AI1 \sim AI2 can support 0 \sim 10V/0 \sim 20mA input through the external DIP switch selection, for 0 \sim 20mA input, 20mA corresponds to 5V.

The following figure is about the relationship between analog input and corresponding setting.

Figure 6-11	Relationship between	analog input and	corresponding setting

F06.28	HDI lower limit frequency	Setting range: 0.00 \sim 50.00kHz	Default value: 0.00kHz
F06.29	Corresponding setting of HDI lower limit frequency	Setting range: -100.0 \sim 100.0%	Default value: 0.0%

Detailed instructions of function parameters

F06.30	HDI upper limit frequency	Setting range: 0.00 \sim 50.00kHz	Default value: 50.00kHz
F06.31	Corresponding setting of HDI upper limit frequency	Setting range: -100.0 \sim 100.0%	Default value: 100.0%
F06.32	HDI frequency input filter time	Setting range: 0.00 \sim 10.00s	Default value: 0.10s

The function codes define the relationship between HDI pulses as the input mode and the analog input.

6.8 Output terminals (F07 group)

EOZ	00	HDO output mode	Setting range: $0 \sim 1$	Default	l
F07.	00		Setting range. 0°° i	value: 0	

0: pulse output

HDO terminal is a programmable multiplexing terminal. The maximum pulse frequency is 50.00kHz for pulse input. For related functions, refer to F07.07.

1: open collector output

For related functions, refer to F07.01.

F07.01	HDO open collector output	Setting range: 0 \sim 20	Default value: 1
F07.02	DO collector output	Setting range: 0~20	Default value: 4
F07.03	Relay T1 output	Setting range: 0 \sim 20	Default value: 5
F07.04	Relay T2 output	Setting range: 0 \sim 20	Default value: 0

0: no output

1: running

The output signal is valid when the inverter is running.

2: fault output

The output signal is valid when the inverter is in fault.

3: frequency level detection FDT output

CT100 inverter Detailed instructions of function parameters

When the output frequency of the inverter is at the upper bound of FDT level, the output signal is valid; when the output frequency is at the lower bound of FDT level, the output signal is invalid.

4: forward running

The output signal is valid when the inverter is running forward.

5: reverse running

The output signal is valid when the inverter is running reversely.

6: ready to run

When the main circuit and control circuit power are applied and the inverter is in the running state, the output signal is valid.

7: frequency arrival

When the deviation between the output frequency of the inverter and the set frequency is in the range of frequency arrival detection amplitude, the output signal is valid.

8: zero speed running

When the inverter output frequency and set frequency are zero and the inverter is running, the output signal is valid.

9: upper limit frequency arrival

When the inverter output frequency reaches the upper limit frequency, the output signal is valid.

10: lower limit frequency arrival

When the inverter output frequency reaches the lower limit frequency, the output signal is valid.

11: overload pre-alarm

F08.04 = 1 or 3, the ON signal is output and the overload parameter is set to F08.02 to F08.03 when the overload warning detection warning time is exceeded.

F08.03 = 2 or 4, the output current is larger than the inverter overload warning point and hold time is larger than the overload warning detection time, the output signal is valid, overload parameter is set in F08.02 \sim F08.03.

12: set count value arrival

When the count value reaches the set count value (F10.07), the output signal is valid.

13: specified count value arrival

When the count value reaches the specified count value (F10.08), the output

signal is valid.

14: simple PLC stage is completed

15: simple PLC cycle is completed

16: running time arrival

The inverter has accumulated more than F13.17 and the output signal is valid.

17 \sim 20: reserved

F07.05	AO1 output	Setting 0~12	range:	Default value: 0
F07.06	AO2 output	Setting 0~12	range:	Default value: 0
F07.07	HDO open collector high-speed pulse output	Setting 0~12	range:	Default value: 0

0: running frequency

$0{\sim}$ maximum output frequency

- 1: ramp reference
- 2: set frequency
- 0~maximum output frequency
- 3: rotating speed
- $0{\sim}2$ times of the motor rated speed
- 4: output current
- $0{\sim}2$ times of the inverter rated current
- 5: output voltage
- $0{\sim}1.5$ times of the inverter rated voltage
- 6: output power
- $0{\sim}2$ times of the rated power
- 7: output torque
- $0{\sim}2$ times of the motor rated current
- 8: set torque
- 9: keypad potentiometer
- 10: AI1

Detailed instructions of function parameters

 $0{\sim}10V$

11: AI2

12: pulse frequency HDI

0.1Hz to 50.00kHz

F07.08	Corresponding setting of AO1 output lower limit	Setting range: 0.0 \sim 100.0%	Default 0.0%	value:
F07.09	AO1 output voltage (current) lower limit	Setting range: 0.00 \sim 10.00V	Default 0.00V	value:
F07.10	Corresponding setting of AO1 output upper limit	Setting range: 0.0 \sim 100.0%	Default 100.0%	value:
F07.11	AO1 output voltage (current) upper limit	Setting range: 0.00 \sim 10.00V	Default 10.00V	value:
F07.12	Corresponding setting of AO2 output lower limit	Setting range: 0.0 \sim 100.0%	Default 0.0%	value:
F07.13	AO2 output voltage (current) lower limit	Setting range: 0.00 \sim 10.00V	Default 0.00V	value:
F07.14	Corresponding setting of AO2 output upper limit	Setting range: 0.0 \sim 100.0%	Default 100.0%	value:
F07.15	AO2 output voltage (current) upper limit	Setting range: 0.00 \sim 10.00V	Default 10.00V	value:
F07.16	Corresponding setting of HDO output lower limit	Setting range: 0.0 \sim 100.0%	Default 0.0%	value:
F07.17	HDO output lower limit	Setting range: 0.00 \sim 50.00kHz	Default 0.00kHz	value:
F07.18	Corresponding setting of HDO output upper limit	Setting range: 0.0 \sim 100.0%	Default 100.0%	value:
F07.19	HDO output upper limit	Setting range: 0.00 \sim 50.00kHz	Default 50.00kHz	value:

Above function codes define the relationship between high-speed pulse output frequency and the corresponding output value. When the output value exceeds the range between lower limit and upper limit, it will be calculated as the upper limit or lower limit.

Detailed instructions of function parameters

For different applications, the corresponding value of 100.0% high speed pulse output is different. For details, please refer to description of each application.

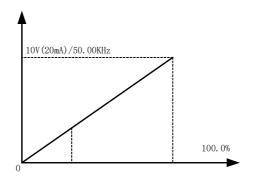
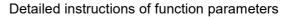


Figure 6-12 Relationship between HDO and corresponding setting

6.9 Fault and protection (F08 group)

F08.00	Motor overload	Setting range: 0 \sim 2	Default
FU0.00	protection	Setting range. 0. 2	value: 0

0: No protection


1: ordinary motor (with low speed compensation): the cooling effect of ordinary motor at low speed is bad; compared with the variable frequency motor, its current overload protection time should be shortened.

2: variable frequency motor (without low speed compensation): the cooling effect has nothing to do with the running frequency.

F08.01	Motor overload protection factor	Setting 120.0%	range:	20.0	\sim	Default value: 100.0%
--------	----------------------------------	-------------------	--------	------	--------	-----------------------------

Refer to the motor rated current. Set the allowable maximum load current.

Maximum load current = F08.01 * motor rated current

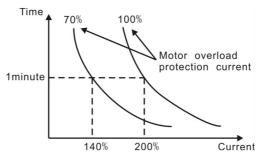


Figure 6-13 Overload protection time and current ratio

The time for the ordinary motor should be shortened appropriately according to the frequency.

Overload current output ratio = (inverter output current/maximum load current) * 100%

When the overload current output ratio is less than or equal to 221%, the time is calculated according to the curve.

When the overload current output ratio is larger than 221% and less than or equal to 410%, the time is 50s.

When the overload current output ratio is larger than 410%, the fault E.OL1 is reported immediately.

F08.02	Motor overload	Setting range	: 10.0 \sim	Default	value:
F00.02	warning point	200.0%		Depend or	n model

Set the current threshold for current overload operation relative to the rated current of the inverter.

F08.03	Motor overload warning detection time	Setting range: 0.1 \sim 60.0s	Default value: 0.1s
			value. 0.15

When the inverter output current is larger than the current overload warning point and the duration exceeds the current overload detection time, the current preload alarm terminal outputs the signal.

F08.04	Overload warning	Setting range: $0{\sim}4$	Default
1 00.04	actuation selection	Setting range. 0 4	value: 1

- 0: no detection
- 1: overload warning is valid in running, continue to run
- 2: overload warning is valid in running, alarm (E.oL3) and stop
- 3: overload warning is valid in constant speed running, continue to run after

detection

4: overload warning is valid in constant speed running, alarm (E.oL3) and stop after detection

F08.05	Overvoltage stall selection	Setting range: 0~1	Default value: 1
--------	-----------------------------	--------------------	---------------------

0: disabled

1: enabled

F08.06	Overvoltage stall protection voltage	Setting range: 110~150%	Default value: 135%
--------	---	-------------------------	------------------------

During DEC running of the inverter, due to load inertia, the actual decreasing ratio of the motor speed is lower than the decreasing ratio of output frequency. At this time, the motor will feedback energy to the inverter, which will make the bus voltage increase.

When the bus voltage exceeds the overvoltage stall protection voltage (F08.06), the inverter will stop DEC running until the bus voltage becomes normal.

F08.07	Overcurrent stall	Setting range: $50 \sim 200\%$	Default
FU0.07	protection current		value: 160%

Refer to the inverter rated current to calculate the current threshold of overcurrent stall protection.

F08.08	Overcurrent stall frequency decreasing ratio	Setting range: $0.00 \sim$ 50.00Hz/s	Default value: 10.00
--------	--	--------------------------------------	-------------------------

During ACC running of the system, due to heavy load, the actual increasing ratio of the motor speed is lower than the increasing ratio of output frequency. The trips of the system will be caused by the ACC overcurrent fault if there are not any measures.

If the output current is larger than the overcurrent stall protection current (F08.07) during acceleration, the output frequency is reduced according to the overcurrent stall frequency decreasing ratio (F08.08) matching with the running frequency to avoid overcurrent. When the output current becomes normal, the inverter continues to accelerate.

F08.09	Overcurrent stall	Setting range: $0 \sim 1$	Default	
1 00.03	actuation selection	Setting range. 0 *1	value: 0	

0: always valid

1: invalid at constant speed

Detailed instructions of function parameters

F08.10	Frequency decreasing point at sudden power loss	Setting range: 70.0~110.0%	Default value: 80.0%
F08.11	Frequency decreasing ratio at sudden power loss	Setting range: 0.00Hz /s \sim F00.06	Default value: 0.00Hz

After the grid powers off, bus voltage decreases to frequency decreasing point at sudden power loss. Then the inverter begins decreasing running frequency according to F08.11 to keep the motor in power generation and make the feedback energy maintain the bus voltage. The inverter will work properly until power on again.

F08.12	Input phase loss protection	Setting range: 0~1	Default value: 1
--------	--------------------------------	--------------------	---------------------

- 0: disabled
- 1: enabled

Set whether to protect at the input phase loss.

F08.13	Output phase loss	Sotting range: 0 - 1	Default
FU0.13	protection	Setting range: $0 \sim 1$	value: 1

- 0: disabled
- 1: enabled

Set whether to protect at the output phase loss.

F08.14	Automatic reset times	Setting range: $0{\sim}3$	Default value: 0
F08.15	Automatic reset interval	Setting range: 0.1 \sim 100.0s	Default value: 1.0s

This function enables the automatic reset of general faults. The inverter will automatically restart after automatic reset interval (F08.15).

If the reset times exceed the automatic reset times (F08.14), the inverter will not reset fault after a fault occurs again.

F08.16	Previous 2 fault type	Setting range: 0 \sim 25	
F08.17	Previous fault type	Setting range: 0 \sim 25	
F08.18	Current fault type	Setting range: 0 \sim 25	

- 0: no fault
- 1: ACC overcurrent (E.oC1)
- 2: DEC overcurrent (E.oC2)
- 3: constant speed overcurrent (E.oC3)
- 4: ACC overvoltage (E.oU1)
- 5: DEC overvoltage (E.oU2)
- 6: constant speed overvoltage (E.oU3)
- 7: bus undervoltage fault (E.Lv)
- 8: inverter unit U phase protection (E.oUT1)
- 9: inverter unit V phase protection (E.oUT2)
- 10: inverter unit W phase protection (E.oUT3)
- 11: motor overload (E.oL1)
- 12: inverter overload (E.oL2)
- 13: overload pre-warning fault (E.oL3)
- 14: radiator 1 overheating (E.oH1)
- 15: radiator 2 overheating (E.oH2)
- 16: input side phase loss (E.ILF)
- 17: output side phase loss (E.oLF)
- 18: braking unit fault (E.bC)
- 19: autotuning fault (E.AUT)
- 20: PID disconnection fault (E.PIDE)
- 21: communication failure (E.485)
- 22: external fault (E.EF)
- 23: EEPROM operation failure (E.EPR)
- 24: run time arrival (E.ENd)
- 25: current detection fault (E.ITE)

F08.19	Frequency at current fault	Display the frequency at the current fault	
F08.20	Current at current fault	Display the current at the current fault	

Detailed instructions of function parameters

F08.21	Bus voltage at current fault	Display the bus voltage at the current fault				
		This value is displayed in decimal digits. Display the state of all digital input terminals in the current fault.				
		BIT3	BIT2	BIT1	BIT0	
	Input torminal	DI4	DI3	DI2	DI1	
F08.22	Input terminal state at	BIT7	BIT6	BIT5	BIT4	
1 00.22	current fault	HDI	DI7	DI6	DI5	
		correspondir	ng decimal	display, wł	med into the nen the input ue is 1, OFF is	
		This value is displayed in decimal digits. Display the state of the output terminal at the current fault.				
		BIT3	BIT2	BIT1	BIT0	
F08.23	Output terminal state	T2	T1	DO	HDO	
	at current fault	correspondir	ng decimal	display, wh	med into the en the output ue is 1, OFF is	

6.10 PID control (F09 group)

PID control is a common method used in process control, such as flow, pressure and temperature control. The principle will firstly detect the bias between preset value and feedback value, then calculate output frequency of the system according to proportional gain, integral and differential time. Please refer to following figure:

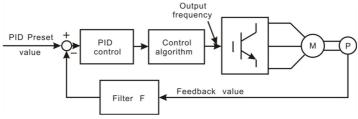


Figure 6-14 PID control

In the system, the PID control is valid only when the X frequency source reference selection (F0.04) or the Y frequency source reference selection (F0.05)

Detailed instructions of function parameters

is the PID control reference.

F09.00	PID reference channel	Setting range: $0{\sim}5$	Default value: 0
--------	--------------------------	---------------------------	---------------------

0: digital reference (F09.01)

- 1: AI1
- 2: AI2
- 3: HDI
- 4: multi-step speed
- 5: 485 communication

When the frequency source selects PID, the parameter decides the target reference channel for the process PID. Reference target of the process PID is a relative value, 100% of preset value corresponds to 100% of feedback value. The system operates in relative value ($0\sim100\%$).

F09.01	PID keypad reference	Setting range: $0.0 \sim 100.0\%$	Default value: 0.0%
--------	-------------------------	-----------------------------------	------------------------

When the PID reference channel (F09.00) is 0, this value is PID reference.

F09.02 PID feedback channel	Setting range: 0~4	Default value: 0
--------------------------------	--------------------	---------------------

0: AI1

1: AI2

- 2: AI1+AI2
- 3: HDI
- 4: 485 communication

	F09.03	PID direction	Setting range: 0 \sim 1	Default value: 0
--	--------	---------------	---------------------------	------------------

0: positive

When the feedback signal is larger than the PID reference, the inverter output frequency is required to decrease in order to make the PID to balance, such as winding tension PID control.

1: negative

When the feedback signal is larger than the PID reference, the inverter output frequency is required to increase in order to make the PID balance, such as unwinding tension PID control.

Detailed instructions of function parameters

F09.04	PID output upper limit (reserved)	Setting range: -100.0 \sim 100.0%	Default value: 100.0%
F09.05	PID output lower limit (reserved)	Setting range: -100.0 \sim 100.0%	Default value: 0.0

F09.04 PID output setting frequency or voltage upper limit.

F09.05 PID output setting frequency or voltage lower limit.

F09.06	Proportional gain P	Setting 100.00	range:	0.00 ~	Default 0.10	value:
F09.07	Integral time I	Setting 10.00s	range:	0.01 ~	Default 0.10s	value:
F09.08	Differential time D	Setting 10.00s	range:	0.00 ~	Default 0.00s	value:

Proportional gain (P): When the feedback and preset have offset, the adjustment is proportional to the offset. The offset is constant, so is the adjustment. Proportional gain can respond to feedback changes but only proportional gain cannot achieve floating control. The larger the proportional gain, the higher the adjusting speed. Too large P may cause oscillation. Set the integral time quite long and differential time to zero, make the system run through proportional gain, change the preset value and check the offset of the feedback and the preset. If the offset is in the direction of the preset variation, continue to increase proportional gain; otherwise, decrease it. Repeat the operation till the offset is much smaller.

Integral time (I): When the feedback and preset have offset, the adjustment is accumulated continuously. If the offset remains, increase the adjustment till no offset. Integral controller can effectively eliminate offset, the smaller the integral time, the stronger the effect. However, too strong integral effect may cause repeated over adjustment and even oscillation. Adjust the integral time from large to small gradually and check the effect till the speed of the system becomes stable.

Differential time (D): When the feedback and preset have offset, the adjustment is proportional to the offset. The adjustment is only related to the direction and size of offset variation and it has nothing to do with offset. When the feedback signal changes, differential time is used to perform adjustment based on variations and thus suppress feedback signal change, the larger the differential time, the stronger the effect. Please use differential controller with cautions, because the adjustment can easily enlarge system interference, especially interference with frequent change.

F09.09 Sampling cycle T	Setting ra	inge: 0.00 \sim	Default value:
-------------------------	------------	-------------------	----------------

Detailed instructions of function parameters

100.00s

0.10s

Set the sampling cycle of the feedback signal, the smaller the parameter, the faster the system responds to the reference and feedback deviation. The faster the sampling cycle has high requirements on the association of the system PID gain and may lead to system oscillation.

When the absolute value of the PID control error <F09.10, the PID stops the adjustment; conversely, the PID regulates the output.

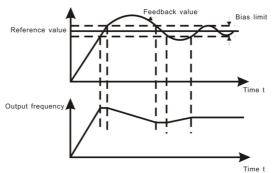
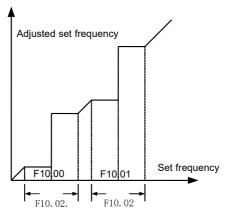


Figure 6-15 Process PID control

F09.11	Feedback loss detection value	Setting range: 0.0~100.0%	Default 0.0%	value:
F09.12	Feedback loss detection time	Setting range: 0.0 \sim 3000.0s	Default 1.0s	value:


When the PID feedback value is less than the feedback loss detection value (F09.11), the feedback loss detection time will start. If the feedback loss detection time (F09.12) is reached, the inverter reports a PID feedback loss fault (E.PIDE).

6.11 Wobble, step length and count value (F10 group)

F10.00 Jump frequency 1	Setting range: F00.06Hz	0.00 ~	Default value: 0.00Hz
-------------------------	----------------------------	--------	--------------------------

F10.01	Jump frequency 2	Setting range: F00.06Hz	0.00 ~	Default value: 0.00Hz
F10.02	Jump frequency amplitude	Setting range: F00.06Hz	0.00 ~	Default value: 0.00Hz

In order to avoid the mechanical resonance point, you can set the jump frequency range of the inverter. When the inverter set frequency falls within the jump frequency, it will automatically adjust to the upper or lower limit of the jump frequency range.

Figure 6-16 Jump frequency adjustment

F10.03	Wobble amplitude	Setting range: 0.0~100.0%	Default value: 0.0%
F10.04	Saltation frequency amplitude	Setting range: $0.0{\sim}50.0\%$	Default value: 0.0%
F10.05	Wobble rise time	Setting range: 0.1~3000.0s	Default value: 5.0s
F10.06	Wobble down time	Setting range: 0.1~3000.0s	Default value: 5.0s

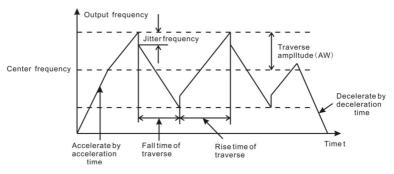


Figure 6-17 Wobble running

Wobble function indicates that the inverter output frequency takes the set frequency in the center and wobbles up and down.

F10.03 is used to calculate the wobble amplitude. Wobble amplitude = F10.03 * set frequency.

F10.04 is used to calculate the sudden jump amplitude. Sudden jump amplitude = F10.04 * wobble amplitude.

F10.05 The time required for the lower limit of the wobble frequency increasing to the upper limit of the wobble frequency.

F10.06 The time required for the upper limit of the wobble frequency decreasing to the lower limit of the wobble frequency.

F10.07	Set count value	Setting range: F10.08 \sim 65535	Default value: 0
F10.08	Designated count value	Setting range: 0~F10.07	Default value: 0

The count value inputs pulse signal counting via the counter of the multi-function digital input terminal.

When the pulse input terminal is set to F10.07, T1 or T2 outputs an indication signal.

When the count value reaches the designated count value, the digital output terminal outputs the signal indicating the arrival of the count value, and the counter is cleared and continues counting when the next pulse arrives.

The designated count value F10.07 should be larger than the preset count value F10.08. For example, F10.08 = 3, F10.07 = 7;

This function is shown in the figure (rising edge triggers counting):

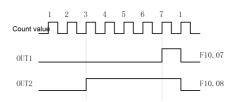


Figure 6-18 Designated count value and preset count value

6.12 Multi-step speed and PLC (F11 group)

Simple PLC function can enable the inverter change its output frequency and directions automatically according to preset running time. For multi-step speed function, the output frequency can be changed only by multi-step terminals.

F11.00	Multi-step speed command 0	Setting range: 100.0%	-100.0 ~	Default value: 0.0%
F11.01	Multi-step speed command 1	Setting range: 100.0%	-100.0 ~	Default value: 0.0%
F11.02	Multi-step speed command 2	Setting range: 100.0%	-100.0 ~	Default value: 0.0%
F11.03	Multi-step speed command 3	Setting range: 100.0%	-100.0 ~	Default value: 0.0%
F11.04	Multi-step speed command 4	Setting range: 100.0%	-100.0 ~	Default value: 0.0%
F11.05	Multi-step speed command 5	Setting range: 100.0%	-100.0 ~	Default value: 0.0%
F11.06	Multi-step speed command 6	Setting range: 100.0%	-100.0 ~	Default value: 0.0%
F11.07	Multi-step speed command 7	Setting range: 100.0%	-100.0 ~	Default value: 0.0%
F11.08	Multi-step speed command 8	Setting range: 100.0%	-100.0 ~	Default value: 0.0%
F11.09	Multi-step speed command 9	Setting range: 100.0%	-100.0 ~	Default value: 0.0%

Detailed instructions of function parameters

F11.10	Multi-step speed command 10	Setting range: -100.0 \sim 100.0%	Default value: 0.0%
F11.11	Multi-step speed command 11	Setting range: -100.0 \sim 100.0%	Default value: 0.0%
F11.12	Multi-step speed command 12	Setting range: -100.0 \sim 100.0%	Default value: 0.0%
F11.13	Multi-step speed command 13	Setting range: -100.0 \sim 100.0%	Default value: 0.0%
F11.14	Multi-step speed command 14	Setting range: -100.0 \sim 100.0%	Default value: 0.0%
F11.15	Multi-step speed command 15	Setting range: -100.0 \sim 100.0%	Default value: 0.0%

The multi-step speed input terminal (refer to F06 group) selects the multi-step speed setting, ON means the terminal is valid, and OFF indicates that the terminal is invalid.

Multi-step speed command terminal 4	Multi-step speed command terminal 3	Multi-step speed command terminal 2	Multi-step speed command terminal 1	Multi-step speed setting
OFF	OFF	OFF	OFF	Multi-step speed command 0
OFF	OFF	OFF	ON	Multi-step speed command 1
OFF	OFF	ON	OFF	Multi-step speed command 2
OFF	OFF	ON	ON	Multi-step speed command 3
OFF	ON	OFF	OFF	Multi-step

Detailed instructions of function parameters

	-			
				speed command 4
OFF	ON	OFF	ON	Multi-step speed command 5
OFF	ON	ON	OFF	Multi-step speed command 6
OFF	ON	ON	ON	Multi-step speed command 7
ON	OFF	OFF	OFF	Multi-step speed command 8
ON	OFF	OFF	ON	Multi-step speed command 9
ON	OFF	ON	OFF	Multi-step speed command 10
ON	OFF	ON	ON	Multi-step speed command 11
ON	ON	OFF	OFF	Multi-step speed command 12
ON	ON	OFF	ON	Multi-step speed command 13
ON	ON	ON	OFF	Multi-step speed command 14
ON	ON	ON	ON	Multi-step speed

Detailed instructions of function parameters

command 15

Table 6-3 Multi-step speed command terminals

F11.16	PLC work mode	Setting range: 0 \sim 2	Default value: 0
--------	---------------	---------------------------	------------------

0: stop after a single run

The inverter stops automatically after completing a single cycle and it cannot start until it receives a run command.

1: run at the final value after a single run

The inverter maintains the last running frequency and direction automatically after completing a single cycle.

2: circulate to run

The inverter will automatically start the next cycle after completing a single cycle and it will not stop until it receives a stop command.

F11.17 PLC power failure memory	Setting range: 0~1	Default value: 0
---------------------------------	--------------------	------------------

0: disabled

1: enabled

PLC power failure memory is to memorize the running stage and frequency before power failure.

F11.18	PLC restart mode	Setting range: $0 \sim 1$	Default value: 0
--------	------------------	---------------------------	---------------------

0: Re-run

1: Continue running at the interrupted frequency.

F11.19	ACC/DEC time selection of PLC step $0 \sim 7$	Setting range: 0x0000 \sim 0xFFFF	Default value: 0x00
F11.20	ACC/DEC time selection of PLC step $8{\sim}15$	Setting range: 0x0000 \sim 0xFFFF	Default value: 0x00

Details are as follows:

Binary Stado	ACC/DEC	ACC/DEC	ACC/DEC
	time 1	time 2	time 3

Detailed instructions of function parameters

BIT1	BIT0	0	00	01	10	11
BIT3	BIT2	1	00	01	10	11
BIT5	BIT4	2	00	01	10	11
BIT7	BIT6	3	00	01	10	11
BIT9	BIT8	4	00	01	10	11
BIT11	BIT10	5	00	01	10	11
BIT13	BIT12	6	00	01	10	11
BIT15	BIT14	7	00	01	10	11
BIT1	BIT0	8	00	01	10	11
BIT3	BIT2	9	00	01	10	11
BIT5	BIT4	10	00	01	10	11
BIT7	BIT6	11	00	01	10	11
BIT9	BIT8	12	00	01	10	11
BIT11	BIT10	13	00	01	10	11
BIT13	BIT12	14	00	01	10	11
BIT15	BIT14	15	00	01	10	11

After selecting the corresponding ACC and DEC time, transform the combined 16-bit binary into 4-bit hexadecimal and input the corresponding function codes.

F11.21 PLC running time unit	Setting range: 0~1	Default value: 0
------------------------------	--------------------	------------------

0: second (s)

1: min (min)

F11.22	Running time of step 0	Setting range: $0.0 \sim$ 6553.5s(h)	Default value: 0.0s(h)
F11.23	Running time of step 1	Setting range: 0.0 \sim 6553.5s(h)	Default value: 0.0s(h)
F11.24	Running time of step 2	Setting range: $0.0 \sim$ 6553.5s(h)	Default value: 0.0s(h)
F11.25	Running time of step 3	Setting range: $0.0 \sim$ 6553.5s(h)	Default value: 0.0s(h)
F11.26	Running time of step 4	Setting range: $0.0 \sim$ 6553.5s(h)	Default value: 0.0s(h)

Detailed instructions of function parameters

F11.27	Running time of step 5	Setting range: $0.0 \sim$ 6553.5s(h)	Default value: 0.0s(h)
F11.28	Running time of step 6	Setting range: $0.0 \sim$ 6553.5s(h)	Default value: 0.0s(h)
F11.29	Running time of step 7	Setting range: $0.0 \sim$ 6553.5s(h)	Default value: 0.0s(h)
F11.30	Running time of step 8	Setting range: $0.0 \sim$ 6553.5s(h)	Default value: 0.0s(h)
F11.31	Running time of step 9	Setting range: $0.0 \sim$ 6553.5s(h)	Default value: 0.0s(h)
F11.32	Running time of step 10	Setting range: $0.0 \sim$ 6553.5s(h)	Default value: 0.0s(h)
F11.33	Running time of step 11	Setting range: $0.0 \sim$ 6553.5s(h)	Default value: 0.0s(h)
F11.34	Running time of step 12	Setting range: $0.0 \sim$ 6553.5s(h)	Default value: 0.0s(h)
F11.35	Running time of step 13	Setting range: $0.0 \sim$ 6553.5s(h)	Default value: 0.0s(h)
F11.36	Running time of step 14	Setting range: $0.0 \sim$ 6553.5s(h)	Default value: 0.0s(h)
F11.37	Running time of step 15	Setting range: $0.0 \sim$ 6553.5s(h)	Default value: 0.0s(h)

6.13 485 communication (F12 group)

CT100 inverter supports the international Modbus protocol and RTU format.

Set the local communication address: 0 for the broadcast address, 1 $\sim\!247$ for slave address.

Detailed instructions of function parameters

F12.01	Baud rate	Setting range: 0~5	Default value: 4
0: 1200b	ps		
1: 2400b	ps		
2: 4800b	ps		
3: 9600b	ps		
4: 19200	bps		
5: 38400	bps		
F12.02	Data check	Setting range: 0~5	Default value: 1

Define the data format for Modbus:

- 0: no check (N, 8,1) for RTU
- 1: even check (E, 8,1) for RTU
- 2: odd check (O, 8,1) for RTU
- 3: no check (N, 8,2) for RTU
- 4: even check (E, 8,2) for RTU
- 5: odd check (O, 8,2) for RTU

F12.02	Data format	Data bit	Check method	Stop bit
0	RTU	8 No check N		1
1	RTU	8 Even check E		1
2	RTU	8 Odd check O		1
3	RTU	8 No check N		2
4	RTU	8 Even check E		2
5	RTU	8 Odd check O		2

Table 6-4 Modbus data format

Detailed instructions of function parameters

F12.03	Response delay	Setting range: 0~200ms	Default value: 5ms
--------	----------------	------------------------	-----------------------

Set the delay time when the inverter responses it after receiving the data of the master.

F12.04	Communication timeout detection time	Setting range: 0 .0s , 0.1 \sim 100.0s	Default value: 0.0
--------	--------------------------------------	--	-----------------------

When the function code is set to 0.0s, the communication timeout fault is invalid.

When the function code is non-zero, if the response of the serial communication is not received within the set time, the inverter reports E.485 fault.

F12.05	Communication timeout error handling	Setting range: $0{\sim}3$	Default value: 1
--------	--------------------------------------	---------------------------	---------------------

0: alarm and coast to stop

1: no alarm and continue running

2: no alarm and stop according to stop mode (communication mode is valid)

3: no alarm and stop according to stop mode (all control modes are valid)

F12.06	Communication processing actuation selection	Setting range: 0 \sim 0x11	Default value: 0x00
--------	--	------------------------------	------------------------

LED ones

0: write with response

1: write without response

LED tens

- 0: set value unsaved after power off
- 1: set value saved after power off

6.14 Auxiliary functions (F13 group)

F13.00	Jogging frequency	Setting F00.06	range:	0.00	\sim	Default 5.00Hz	value:
F13.01	Jogging running ACC	Setting	range:	0.0	\sim	Default	value:

Detailed instructions of function parameters

	time	3000.0s		20.0s	
F13.02	Jogging running DEC time	Setting range: 3000.0s	0.0 ~	Default 20.0s	value:

F13.00: the set frequency for jogging running.

F13.01: the time it takes for the output frequency of the inverter increasing from zero frequency to the maximum frequency F00.06.

F13.02: the time it takes for the output frequency of the inverter decreasing from the maximum frequency F00.06 to zero frequency.

Note: The operating priority is as follows: forced deceleration > jogging running > multi-step speed running > normal frequency running.

F13.03	ACC time 1	$\begin{array}{c c} \mbox{Setting} & \mbox{range:} & 0.0 & \sim \\ \mbox{3000.0s} & & 20.0s \end{array} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
F13.04	DEC time 1	$\begin{array}{c} \text{Setting range: } 0.0 \ \sim \\ 3000.0s \end{array} \begin{array}{c} \text{Default value:} \\ 20.0s \end{array}$
F13.05	ACC time 2	$\begin{array}{c} \text{Setting} \text{range:} 0.0 \sim \\ 3000.0s \end{array} \begin{array}{c} \text{Default} \text{value:} \\ 20.0s \end{array}$
F13.06	DEC time 2	$\begin{array}{c} \text{Setting} \text{range:} 0.0 \sim \\ 3000.0s \end{array} \begin{array}{c} \text{Default} \text{value:} \\ 20.0s \end{array}$
F13.07	ACC time 3	$\begin{array}{ccc} \text{Setting} & \text{range:} & 0.0 & \sim \\ 3000.0s & & & 20.0s \end{array} \text{Default} \text{value:} \\ \end{array}$
F13.08	DEC time 3	$\begin{array}{ccc} \text{Setting} & \text{range:} & 0.0 & \sim \\ 3000.0s & & & 20.0s \end{array} \text{Default} \text{value:} \\ \end{array}$

ACC time 1/2/3 is the same as ACC time 0 and DEC time 1/2/3 is same as DEC time 0. You can select the corresponding ACC/DEC time by ACC/DEC time selection 1 and 2.

F13.09 Emergency stop DEC Setting range 3000.0s	: 0.0 ~	Default value: 1.0s	
---	---------	------------------------	--

The DEC time is used when the inverter receives an "emergency stop deceleration" signal from the input terminal, the time it takes for the output frequency of the inverter decreasing from the maximum frequency F00.06 to zero frequency. The inverter is decelerated to 0 and then it stops. This function is

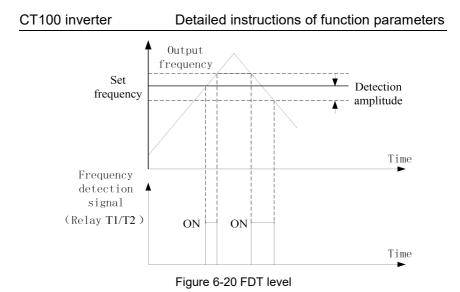
Detailed instructions of function parameters

Time t

forced deceleration switch.

F13.10	FDT level detection value	$\begin{array}{c c} \mbox{Setting} & \mbox{range:} & 0.00 & \sim \\ \mbox{F00.06} & & 50.00\mbox{Hz} \end{array} \end{array} \mbox{Default} \ \mbox{value:} \\ \end{array}$
F13.11	FDT lag detection	$\begin{array}{c c} \text{Setting} & \text{range:} & 0.0 & \sim \\ 100.0\% & & & 5.0\% \end{array} \text{ Default} \text{value:} \\ \end{array}$
	FDT level	FDTIag Time t

Figure 6-19 Relationship between output frequency and FDT output


The FDT output is valid when the output frequency reaches the FDT level detection value (F13.10) during the frequency increasing.

The FDT output is invalid when the output frequency is less than or equal to the FDT lag frequency f_{delay} during the frequency decreasing.

F_delay = FDT level detection value * (100% - FDT lag detection value).

F13.12	Frequency arrival detection amplitude	Setting range: 0.0~100.0%	Default value: 0.0	
--------	---------------------------------------	---------------------------	-----------------------	--

This function is used to detect the deviation of the output frequency and the set frequency. The deviation between the output frequency of the inverter and the set frequency is within the setting range of the function code. The frequency arrival terminal (refer to F06 group) output is valid.

F13.13 Di	roop control	Setting 10.00Hz	range:	0.00	~	Default value: 0.0
-----------	--------------	--------------------	--------	------	---	-----------------------

When several motors drive the same load, each motor's load is different because of the difference of motor's rated speed. The load of different motors can be balanced through droop control function which makes the speed droop along with load increasing.

This function sets the threshold voltage of energy consumption brake, 100.0% corresponds to the standard bus voltage (inverter rated voltage * 1.414). When the bus voltage is larger than the threshold voltage, the energy consumption brake starts and the value can be adjusted for effective energy consumption brake of the load.

F13.15	Overmodulation function	Setting range: 0 \sim 1	Default value: 0	
--------	----------------------------	---------------------------	---------------------	--

0: invalid

1: valid

This function is used when the grid voltage is low or the inverter is at heavy load for a long term. The inverter can increase the output voltage by adjusting the bus voltage utilization rate. When the voltage is overmodulated, the output current

Detailed instructions of function parameters

harmonics will increase slightly.

F13.16	Running mode of cooling fan	Setting range: 0~1	Default value: 0
	al running mode up running		
F13.17	Set running time	Setting range: $0{\sim}65535$	Default value: 0

6.15 Reserved functions (F14 group)

F14.00~F14.09 Reserved	1	1
------------------------	---	---

6.16 Factory parameters (F15 group)

F15.00	Factory password	Setting range: $0{\sim}65535$	Default value: ****
--------	------------------	-------------------------------	------------------------

7 Faults and solutions

7.1 Common faults and solutions

The inverter may have following faults during running. Please refer to the following methods for simple fault analysis:

7.1.1 No display after power on

Check that the inverter input power is consistent with the rated voltage of the inverter. If there is a problem with the power supply, please check and remove.

Check whether the three-phase rectifier bridge is intact. If the rectifier bridge is damaged, please ask for service.

Check if the POWER LED is on. If the LED is off, the rectifier bridge or the buffer resistor may be damaged. If the LED is on, the switching power supply may be damaged. Please ask for service.

7.1.2 Automatic power off after power on:

Check whether there is grounded or short circuited among the input power sources.

Check whether the rectifier bridge has been broken down, if damaged, ask for service.

When the inverter runs, the power supply automatically trips; check the input leakage protector.

Check whether there is a short circuit between the output modules. If yes, please ask for service.

Check whether there is a short circuit or ground between the motor leads.

If the trip occasionally occurs and the distance between the motor and the inverter is relatively far, consider adding the output AC reactor.

7.1.3 The motor does not rotate after the inverter is running

Check whether there is a balanced three-phase output between U, V and W. If yes, the motor cable or the motor is damaged, or the motor stalled due to mechanical causes.

There may be three-phase output but unbalanced. The drive board or output

module may be damaged, please ask for service.

If there is no output voltage, the drive board or output module may be damaged, please ask for service.

7.2 Fault information and solutions

When the inverter has fault in use, refer to the fault codes and fault states of F08.16 ${\sim}$ F08.23.

Code	Туре	Reason	Solution
E.oC1	ACC running overcurrent	 The acceleration is too fast The grid voltage is too low The inverter power is too small 	 Increase the ACC time Check the input power Select the inverter of larger power
E.oC2	DEC running overcurrent	 The deceleration is too fast Load inertia torque is too large The inverter power is too small 	 Increase the DEC time Add the appropriate energy consumption braking components Select the inverter of larger power
E.oC3	Constant speed running overcurrent	 Load sudden change or abnormal The grid voltage is too low The inverter power is too small 	 Check load or decrease load sudden change Check the input power Select the inverter of larger power
E.oU1	ACC running overvoltage	 The input voltage is abnormal After instantaneous power failure, restart the rotating motor 	 Check the input power Avoid restart at stop
E.oU2	DEC running overvoltage	 The deceleration is too fast The load inertia is too large The input voltage is abnormal 	 Increase the DEC time Add the appropriate energy consumption braking components Check the input power

Table 7-1 Troubleshooting list

Faults and solutions

Code	Туре	Reason	Solution
E.oU3	Constant speed running overvoltage	 The input voltage has changed abnormally The load inertia is too large 	 Install the input reactor Add the appropriate energy consumption braking components
E.Lv	Bus undervoltage	The grid voltage is too low	Check the grid input power
E.oUT1	Converter unit U-phase fault	1. The acceleration is too fast	1. Increase the ACC time
E.oUT2	Converter unit V-phase fault	2. The internal IGBT is damaged	 Ask for service Check if the peripheral
E.oUT3	Converter unit W-phase fault	 Interference causes malfunction The grounding is good 	devices have a strong interference source
E.oL1	Motor overload	 The grid voltage is too low The motor rated current is not set correctly Motor stall or load sudden change Motor power is much larger than load power 	 Check the grid voltage Reset the motor rated current Check the load and adjust the torque boost Select the appropriate motor
E.oL2	Inverter overload	 The acceleration is too fast Restart the rotating motor The grid voltage is too low The load is too large 	 Reduce the acceleration speed Avoid restart at stop Check the grid voltage Select the inverter of larger power
E.oL3	Overload pre-warning	 The load is too heavy The motor parameters are not correct during vector control The grid voltage is too low 	 Select a larger inverter Carry out motor rotation autotuning Check the grid voltage
E.oH1	Rectifier module overheating	1. Instantaneous overcurrent of the inverter	 Refer to overcurrent solutions Redistribution

Faults and solutions

Code	Туре	Reason	Solution
E.oH2	Converter module overheating	 Phase or ground short circuit of output three phases The duct is blocked or the fan is damaged The ambient temperature is too high The wiring or connectors of the control board is loose The auxiliary power supply is damaged and the drive voltage is undervoltage The power module bridge is conducted The control board is abnormal 	 Dredge the duct or replace the fan Reduce the ambient temperature Check and reconnect Ask for service Ask for service Ask for service
E.ILF	Input phase loss	Input R, S, T phase loss	 Check the input power Check the installation and wiring
E.OLF	Output phase loss	 Output U, V, W phase loss Serious asymmetry of load three-phase 	 Check the output wiring Check the motor and cable
E.bC	Braking unit fault	 Braking wiring fault or braking tube damaged The external braking resistance is too small 	 Check the braking unit and replace a new braking tube Increase the braking resistance
E.AUT	Motor autotuning fault	 The motor capacity does not match with the inverter capacity Incorrect setting of motor rating parameters The deviation between autotuning parameters and standard parameters is too large Autotuning timeout 	 Replace the drive model Set the rated parameters according to the motor name plate Make the motor at no load and re-identification Check the motor wiring and parameters setting

Faults and solutions

Code	Туре	Reason	Solution
E.PIDE	PID feedback disconnection	1.PID feedback disconnection 2.PID feedback source disappears	 Check the PID feedback signal cable Check the PID feedback source
E.485	Communication fault	 Incorrect baud rate setting Communication error when using serial communication Communication interruption for a long time 	 Set the appropriate baud rate Press the <u>STOP/RESET</u> key to reset and ask for service Check the wiring of communication interfaces
E.EF	External fault	SI external fault input terminal operation	1. Check the external device input
E.EEP	EEPROM read and write fault	 Control parameters read and write error EEPROM damaged 	1. Press the STOP/RESET key to reset and ask for service 2. Ask for service
E.END	Running time arrival	User trial time arrival	Ask for service
E.ITE	Current detection circuit fault	 The connector of the control board is in poor connection The auxiliary power supply is damaged Hall device is damaged Amplifier circuit is abnormal 	 Check the connector and reconnect Ask for service Ask for service Ask for service

Tips: If you cannot perform troubleshooting according to the above solutions, please contact our after-sales service department.

8 Daily maintenance

The environmental temperature, humidity, salt mist, dust, cotton or vibration may cause the faults of the inverter. In order to prevent the faults of the inverter and make it run smoothly in high-performance for a long time, you must check the inverter periodically.

Note: The maintenance personnel must follow the specified maintenance methods.

Only qualified technicians can carry out maintenance.

During maintenance, the power supply of the inverter must be cut off, the power LED is off or the DC bus voltage is less than 36VDC.

8.1 Daily maintenance

Check item	Check content	Method	Criterion
	Temperature	Thermometer	-10°C∼50°C
Environment	Humidity	Hygrometer	5% \sim 95%, no condensation
	Dust, cotton, oil	See	No dust or cotton
	Vibration	Feel	No abnormal vibration
	Noise	Hear	No abnormal noise
	Odor	Smell	Odorless
Inverter	Appearance	See	No defect or deformation
inverter	Temperature	Feel	No abnormal heating
	Fan	See	Air duct without block, normal air flow and no noise
	Temperature	Feel	No abnormal heating
Motor	Odor	Smell	odorless
WOLDI	Noise	Hear	No abnormal noise
	Vibration	Feel	No abnormal vibration
Running status	Inverter input current	Ammeter	The parameters meet the requirements of the
parameters	Inverter input	Voltmeter	specifications.

Table 8-1	Daily	maintenance
-----------	-------	-------------

Daily maintenance

Check item	Check content	Method	Criterion
	voltage		
	Inverter output current	Ammeter or displayed parameters	
	Inverter output voltage	Voltmeter or displayed parameters	
	Rectifier bridge, converter module temperature	F05.13 and F05.14	The difference between displayed temperature and ambient temperature is not more than 40℃.

8.2 Periodic maintenance

Table 8-2 Periodic (three months) maintenance

Chack item Chack content Method			
Check item	Check content	Method	
Control terminal screws	Whether the screws are loose	Tighten	
Main circuit terminal screws	Whether the screws are loose	Tighten	
Grounding terminal screws	Whether the screws are loose	Tighten	
PCB board	Dust or sundries	Clean up sundries with dry compressed air	
Abnormal noise and vibration, the Fan cumulative time is more than 20,000 hours		1. Clean up sundries 2. Replace the fan	
Electrolytic capacitor Whether to change color, with or without smell		Replace the electrolytic capacitor	
Radiator	Dust or sundries	Clean up sundries with dry compressed air	
Power components	Dust or sundries	Clean up sundries with dry compressed air	

8.3 Replacement of wear parts

The inverter fan and electrolytic capacitor are easy to be damaged. In order to ensure the inverter runs safely without faults for a long term, you need to replace the wear parts periodically. The replacement time for wear parts is as follows:

♦ Fan: it needs to be replaced after using more than 20,000 hours

• Electrolytic capacitor: it needs to be replaced after using 30,000 to 40,000 hours

8.4 Storage of the inverter

The storage environment should meet the following conditions:

Category	Storage environment
Temperature	-40°C~70°C
Humidity	5% \sim 95%, no condensation
Surroundings	No direct sunlight, dust, corrosive gases or vibration (can be sealed with plastic bags and desiccant)

Table 8-3 Storage environment

Note: Long-term storage may cause electrolytic capacitor degradation. The electrolytic capacitor should be energized once in 2 years and the rated voltage should rise slowly by the regulator.

9 Communication protocol

The CT100 series inverters provide RS485 communication interface. You can realize centralized control via PC/PLC (set the run commands and function parameters of the inverter, read the work state and fault information of the inverter) to meet the specific requirements.

1. Content

The serial communication protocol defines the content and format of the transmission information for serial communication, including master polling (or broadcast) format, master encoding method including the required function codes, transmission data and error check. The slave response also uses the same structure including actuation confirmation, return data and error check. If an error occurs when the slave receives information or the slave cannot complete the actuation required by the master, it will feedback a response of fault information to the master.

2. Application mode

The inverter has access to "single- master multi-slaves" PC/PLC control network with RS485 bus.

Support Modbus protocol and RTU format; broadcast address is 0 and slave address can be set to $1\sim$ 247.

3. Bus structure

(1) interface mode

RS485 (CT100 terminals: 485 + and 485-) hardware interface

(2) transmission mode

Asynchronous serial, half duplex transmission. At the same time, only one can send data and the other can receive data for the master and the slave. Data in the serial asynchronous communication process, in the form of a message, can be sent one by one frame.

(3) topology structure

Single-master multi-slaves network, the slave address in the network must be unique.

4. Description of the protocol

CT100 series inverter communication protocol is an asynchronous serial master-slave Modbus communication protocol and only one device (master) in the network can establish a protocol (called "query/command"). Other devices (slaves) can only provide data to respond to the master's "query/command" or make the corresponding actuation according to the master's "query/command".

The master refers to a personal computer (PC), an industrial control device or a programmable logic controller (PLC), etc. The slave is CT100 inverter. The master can communicate with a single slave as well as send a broadcast message to all slaves. For the master's single "query/command", the slave has to return a message (called a response), for the master's broadcast message, the slaves do not need to respond to the master.

5. Communication data format

The Modbus protocol communication data format of CT100 series inverters is as follows:

In RTU mode, the minimum interval time should be at least 3.5 bytes for message transmission, which is the easiest way to achieve a variety of character time at the baud rate. The first transmitted field is the device address. The transmitted characters can be hexadecimal 0...9 and A...F. The network device constantly detects the network bus, even during the interval time. When the first field (address field) is received, the corresponding device decodes next transmitting character. After the last transmitting character, the interval time of at least 3.5 bytes marks the end of the message. A new message can start after this pause.

The whole message frame is a continuous transmitting flow. If there is an interval time of more than 1.5 bytes before the frame is completed, the receiving device will renew the uncompleted message and assume that the next byte is the address field of a new message. As such, if the new message follows the previous message within the interval time of 3.5 bytes, the receiving device will deal with it as the same with the previous message. If these two phenomena all happen during the transmission, the CRC will generate a fault message to respond to the sending devices.

START	Interval time of 3.5 bytes	
ADR	Communication address: 1~247	
CMD	03: read slave parameters; 06: write slave parameters	
DATA (N-1)		
DATA (N-2)	Function parameter address, function parameter	
	number, function parameter value etc.	
DATA (0)		
CRC CHK low bit	Detection value: CRC	
CRC CHK high bit		

RTU frame format

Communication protocol

END Interval time of 5.5 bytes	END
--------------------------------	-----

CMD (command instruction) and DATA

Command code: 03H, read N words (at most 16 words can be read)

For example: the baud rate 19200bps, even check (E, 8,1) for RTU, read continuous two data from the inverter F06.19 with the slave address of 01.

Master command message

	-	
ADR	01H	
CMD	03H	
High bit of start address	06H (Function code group)	
Low bit of start address	13H (Function code bit)	
High bit of register number	00H	
Low bit of register number	02H	
Low bit of CRC CHK	35H	
High bit of CRC CHK	46H	

Slave response message

ADR	01H
CMD	03H
The number of bytes	04H
High bit of F06.19 data	00H
Low bit of F06.19 data	00H
High bit of F06.20 data	03H
Low bit of F06.20 data	E8H
Low bit of CRC CHK	FAH
High bit of CRC CHK	8DH

Command code: 06H, write a word

For example: the baud rate 19200bps, even check (E, 8,1) for RTU, write 40.00Hz (communication without decimal point) (0FA0H) to F00.09H address of the inverter whose slave address is 02H, and change the keypad set frequency to 40.00Hz.

Master command message

ADR	02H	
CMD	06H	
High bit of F00.09 address	00H (Function code group)	
Low bit of F00.09 address	09H (Function code bit)	
High bit of F00.09 data	0FH	

Low bit of F00.09 data	A0H
Low bit of CRC CHK	5CH
High bit of CRC CHK	73H

•	0
ADR	02H
CMD	06H
High bit of F00.09 address	00H (Function code group)
Low bit of F00.09 address	09H (Function code bit)
High bit of F00.09 data	0FH
Low bit of F00.09 data	A0H
Low bit of CRC CHK	5CH
High bit of CRC CHK	73H

Slave response message

Check mode-CRC (Cyclical Redundancy Check) check

The checkout uses RTU frame format. The frame includes the frame error detection field which is based on the CRC calculation method. The CRC field is two bytes including 16 figure binary values. It is added into the frame after calculated by transmitting device. The receiving device recalculates the CRC of the received frame and compares them with the value in the received CRC field. If the two CRC values are different, there is an error in the communication.

Using the RTU frame format, the message includes an error detection field based on the CRC method. The CRC field detects the contents of the entire message. The CRC field is two bytes and contains a 16-bit binary value. It is added to the message by the transmission device. The receiving device recalculates the CRC of the received message and compares it with the value in the received CRC field. If the two CRC values are not equal, the transmission has an error.

During CRC, 0*FFFF will be stored. And then, deal with the continuous 6-above bytes in the frame and the value in the register. Only the 8Bit data in every character is effective to CRC, while the start bit, the end and the odd and even check bit is ineffective.

The calculation of CRC applies the international standard CRC checkout principles. When you are editing CRC calculation, you can refer to the relative standard CRC calculation to write the required CRC calculation program.

Here provided a simple function of CRC calculation for the reference (programmed with C language)

unsigned int crc_cal_value(unsigned char*data_value,unsigned char data_length)

```
{
int i:
unsigned int crc value=0xffff;
while(data length--)
{
crc value^=*data value++;
for(i=0:i<8:i++)
{
if(crc value&0x0001)
crc value=(crc value>>1)^0xa001;
else
crc value=crc value>>1;
}
}
return(crc value);
}
```

Fault message response

The slave uses functional code fields and fault addresses to indicate it is a normal response or some error occurs (named as objection response). For normal responses, the slave shows corresponding function codes, digital address or sub-function codes as the response. For objection responses, the slave returns a code which equals the normal code, but the first byte is logic 1.

For example: when the master sends a message to the slave, requiring it to read a group of address data of the inverter function codes, there will be following function codes:

0 0 0 0 0 0 1 1 (hexadecimal 03H)

For normal responses, the slave responds the same function codes, while for objection responses, it will return:

```
1000011 (hexadecimal 83H)
```

Besides the function codes modification for the objection fault, the slave will respond a byte of abnormal code which defines the error reason.

When the master receives the response for the objection, in a typical processing, it will send the message again or modify the corresponding order.

Error code and meaning

Modbus abnormal code			
Code	Name	Meaning	
01H	lllegal command	The command from master cannot be executed. This command is only for new version and this version cannot realize. Slave is in fault state and cannot execute it.	
02H	lllegal data address	Some of the operation addresses are invalid or not allowed to access. Especially the combination of the register and the transmitting bytes are invalid.	
03H	lllegal value	When there are invalid data in the message framed received by slave. Note: This error code does not indicate the data value to write exceed the range, but indicate the message frame is an illegal frame.	
06H	The slave is busy	Inverter is busy (EPPROM is in storage)	
10H	Password error	The password written to the password check address is not the same as the password set by P7.00.	
11H	Check error	In the frame message sent by the upper monitor, the length of the digital frame is incorrect or the counting of CRC check bit in RTU is different from the lower monitor.	
12H	Invalid parameter change	It only happens in write command. The written data exceeds the parameter range. The parameter should not be modified now. The terminal has already been used.	
13H	The system is locked	When the upper computer is reading or writing and the user password is set without password unlocking, it will report that the system is locked.	

Address definition of communication parameters

It is used to control the inverter operation, inverter status and related parameter settings.

Read and write function parameters (some function codes cannot be changed, only for manufacturers to use):

The rules of parameter address of the function codes:

High byte: group number before the radix point of the function code (00 \sim 15) Group 0 to Group 15

Low byte: the number after the radix point (00 \sim FF)

For example, the parameter address of F13.17 is 0D11H.

Note: Some parameters cannot be changed when the inverter is in the running state and some parameters cannot be changed in any state. The setting range, unit and relative instructions should be paid attention to when modifying the function code parameters. Besides, EEPROM is stored frequently, which may shorten the usage time of EEPROM. Some functions are not necessary to be stored on the communication mode. The needs can be met on by changing the value in RAM. Changing the high bit of the function code from 0 to 1 can also realize the function. The corresponding function code address is as follows:

High byte: $00{\sim}0F$

Low byte: 00~FF

For example, F03.12 is not stored in EEPROM, the address is 830CH; the address can only write RAM and cannot read, read for the invalid address.

Function instruction	Address definition	Data meaning instruction	R/W characteri stics
		0001H: forward running	
		0002H: reverse running	
	1000H	0003H: stop	
Communication control command		0004H: coast to stop (emergency stop)	W/R
		0005H: fault reset	
		0006H: forward jogging	
		0007H: reverse jogging	
		0008H: jogging stop	
Inverter status	1001H	0001H: forward running	
		0002H: reverse running	
		0003H: stop	R
		0004H: fault	

485 communication address

Communication protocol

		0005H: -E.Lv- status	
The address of the communication setting value	2000H	Communication set frequency (-10000~10000, 10000 corresponds to 100.00%, -10000 corresponds to -100.00%)	W/R
	2001H	Torque set value (-1000 \sim 1000, 1000 corresponds to 100.0%)	
	2002H	Upper limit frequency setting (0 \sim Fmax, unit: 0.01Hz)	W/R
	2003H	PID reference (0 \sim 1000, 1000 corresponds to 100.0%)	W/R
	2004H	PID feedback (0~1000, 1000 corresponds to 100.0%)	W/R
The address of the running/stoppin g parameter	3000H	Running frequency (0 \sim Fmax, unit 0.01Hz)	R
	3001H	Set frequency (0 \sim Fmax, unit 0.01Hz)	R
	3002H	Output current (0.0~3000.0, unit 0.1A)	R
	3003H	Output voltage (0~1200V, unit 1V)	R
	3004H	Running speed (0 \sim 65535, unit 1RPM)	R
	3005H	Bus voltage (0 \sim 2000.0, unit 0.1V)	R
	3006H	Output power (- $300.0 \sim 300.0\%$, unit 0.1%, 100% corresponds to motor rated power)	R
	3007H	Output torque (-250.0~250.0%, unit 0.1%, 100% corresponds to motor rated torque)	R

Communication protocol

	3008H	Input terminal status (000 to 0FF, unit 01H)	R
	3009H	Output terminal status (00 to 0F, unit 01H)	R
	300AH	Analog AI1 (0.00~10.00V, unit 0.01V)	R
	300BH	Analog Al2 (-10.00~10.00V, unit 0.01V)	R
	300CH	High speed pulse HDI (0.00 \sim 50.00kHz, unit 0.01kHz)	R
	300DH	PID set value (0 \sim 1000, 1000 corresponds to 100.0%)	R
	300EH	PID feedback value (0 \sim 1000, 1000 corresponds to 100.0%)	R
	300FH	PLC and current step of multi-step speed (0 \sim 0xFFFF)	R
	3010H	External count value (0 \sim 65535)	R
	3011H	Torque set value (-200.0 \sim 200.0%, unit 0.1%)	R
	3012H	Fault code (0 \sim 25)	R
	3013H	Device code (100H)	R
	3014H	Reserved	R
	3015H	Reserved	R
	3016H	Reserved	R